API src

Found 111 results.

Related terms

Bestimmung kanzerogener aromatischer Amine aus verbotenen Azofarbstoffen der Textilindustrie

Spaltung und Extraktion von aromatischen Aminen aus Azofarbstoffen auf Textilien; Bestimmung bestimmter kanzerogener Verbindungen

Untersuchungen zur Pharmakokinetik und zum Metabolismus carcinogener, aromatischer Amine

Der Stoffwechsel aromatischer Amine wird mit dem Ziel untersucht, die fuer die akut toxischen und krebserzeugenden Wirkungen verantwortlicher Metaboliten zu identifizieren und die Ursachen fuer ihre gewebespezifische Wirkung aufzuklaeren. Das Studium der Abhaengigkeit der metabolischen Aktivierung und Inaktivierung von der Dosis soll dabei einen Beitrag zur Risikoabschaetzung im Bereich niedriger Dosen leisten.

Bildung von gentoxischen Nitrosoverbindungen durch Nitrosierung von Nahrungskomponenten

Nitrat wird durch die Bakterien der Mundhoehle im Durchschnitt zu etwa 10 Prozent zu Nitrit reduziert. Dieses gelangt mit dem Speichel in den Magen, wo die sauren Bedingungen eine Nitrosierung von Nahrungskomponenten foerdern. Die entstehenden Nitroso-verbindungen werden z.T. enzymatisch, z.T. spontan, in chemisch reaktive Produkte umgewandelt. Eine Reaktion dieser Abbauprodukte mit der Erbsubstanz DNA kann zur Krebsausloesung beitragen. Im Rahmen frueherer Dissertationen wurde gezeigt, dass Alkylharnstoffe, aromatische Amine, sowie einzelne Aminosaeuren als wichtige Vorlaeufer in Frage kommen. Nicht zuletzt wegen der steigenden Nitratbelastung durch unsere Ernaehrung ist es deshalb wichtig, die endogene Bildung von kanzerogenen Nitrosoverbindungen fuer verschiedene Stoffklassen zu analysieren und in Relation zu setzen mit der Aufnahme von vorgebildeten Nitrosoverbindungen.

Anreicherung von aromatischen Aminen in Textilien und ihre Umweltemission durch Waschwasser

In Innenräumen findet sich eine Vielzahl von Chemikalien, die aus Gegenständen, Materialien oder durch menschliche Aktivitäten freigesetzt werden und ein Risiko für aquatische Ökosysteme darstellen können, falls entsprechende Chemikalien in den Wasserkreislauf gelangen. Wir stellen die Hypothese auf, dass aromatische Amine (AA), die aus Innenräumen emittiert werden, in Oberflächengewässer eingetragen werden und dort signifikant zur Belastung und der damit verbundenen Mutagenität beitragen. Gewaschene Textilien, die durch Emissionsquellen in Innenräumen mit AA kontaminiert sind, wirken als Überträger dieser Substanzen in Abwässer. Die Berücksichtigung dieses Übertragungsweges kann uns helfen, das Auftreten von AA ohne klare Emissionsquellen in Oberflächengewässern besser zu verstehen. In vielen Studien wird berichtet, dass AAs, welche in Innenräumen beispielweise durch Rauchen und Grillen von Fleisch entstehen, die Hauptursache für Mutagenität in Oberflächengewässern und häuslichen Abwässern sind. Sie können durch gasförmige und Partikeldepostion auf Textilien adsorbiert werden. Daher wollen wir den Übertragungsweg von AA aus Innenräumen in Oberflächengewässer im Hinblick auf die folgenden vier Aspekte untersuchen: (i) Stoffgruppen-spezifisches Non-target-Screening zum Nachweis der gesamten Verbindungsklasse in allen Matrizes entlang des dargestellten Expositionspfades, d.h. in Extrakten von Textilien, Staub, Waschwasser, Abwasser und Oberflächenwasser; (ii) Instrumente zum Monitoring aromatischer Amine aus Abwässern und Oberflächengewässern mittels selektiver Anreicherung, um ihren Verbleib in Kläranlagen und das damit verbundene Risiko für Wasserorganismen zu entschlüsseln; (iii) Charakterisierung der Aufnahme AA durch Textilien durch gasförmige und Partikeldeposition und ihre Verteilung in Innenräumen durch Expositionsexperimente im Labor und realen Innenräumen und (iv) Anwendung aller entwickelten Instrumente und Methoden in Kombination mit diagnostischen Mutagenitätstests zur Aufklärung der angenommenen Emissionswege. Hierbei werden Textilbelastung in Innenräumen mit verschiedenen AA-Quellen berücksichtigt, Waschexperimente durchgeführt und Proben aus Kläranlagen und Abwasserauffangbecken entnommen, um die quellenbezogenen Muster und die wichtigsten AA zu identifizieren, die die beobachtete mutagene Aktivität verursachen. Mit diesem Ansatz wollen wir die Kenntnislücke zwischen Innenraumexpsosition und der Umweltexposition schließen. In diesem Projekt wird das Fachwissen eines deutschen und eines tschechischen Forschungsinstituts kombiniert. Es umfasst das Target-, Suspect- und Non-target-Screening nach organischen Schadstoffen in komplexen Umweltmischungen, die Detektion von Mutagenität und den zugrundeliegenden Chemikalien in Oberflächenwasser mit wirkungsorientierter Analytik und passiver Probenahme in verschiedenen Umweltmatrizes, sowie die Berücksichtigung von Verteilungsmechanismen von Verbindungen in Innenräumen.

Dynamische Methanolproduktion aus Hüttengasen, MeOH Synthese

Abbau von sulfonierten Azofarbstoffen

Azofarbstoffe stellen die mengenmaessig wichtigste Klasse an Farbstoffen dar. Jaehrlich werden mehrere hunderttausend Tonnen dieser Farbstoffe produziert und fuer die Faerbung von Papier, Leder, Textilien und anderen Artikeln verwendet. Die meisten industriell eingesetzten Azofarbstoffe enthalten neben der Azobindung 1-3 Sulfonsaeuregruppen und sind unter aeroben Bedingungen biologisch nicht abbaubar. Im Institut fuer Mikrobiologie wird daher versucht, eine Spaltung der Azobindung durch anaerobe Reduktion zu erreichen und diese anaerobe Vorbehandlung mit einem nachfolgenden aeroben Abbau der entstandenen sulfonierten Aminoaromaten zu verbinden. Hierdurch konnte an verschiedenen Modellverbindungen eine Mineralisierung sulfonierter Azofarbstoffe gezeigt werden. Die Kopplung der anaeroben und aeroben Verfahren wurde einerseits mit immobilisierter Biomasse in einem Bioreaktor oder mit suspendierten Zellen durch einen zweistufigen Anaerob/aerob-Prozess erreicht. Die Steigerung der anaeroben Reduktionsraten durch die Zugabe von redoxaktiven Chinonen wird derzeit eingehend untersucht, mit dem Ziel, die Raum-Zeit-Ausbeuten bei dem anaeroben Reduktionsprozess zu erhoehen. Des weiteren wird versucht, die Faehigkeit einiger hochgradig adaptierter Bakterien zur aeroben Reduktion von Azofarbstoffen zu nutzen, indem die Azoreduktasen kloniert und mittels genetischer Techniken fuer den Abbau industriell relevanter Azofarbstoffe optimiert werden sollen.

Entwicklung und Erprobung einer kathodischen Nano-Filtrationsmembran für die reduktive Behandlung und Filtration von wasserunlöslichen Farbstoffen und Farbpigmenten zur Aufbereitung von Textilabwasser mit dem Ziel der Wasserkreislaufführung sowie...

Mit einem neuartigen Verfahren sollen im Abwasser der Färberei und Druckerei enthaltene Farbmittel, lösliche wie dispergierbare oder unlösliche Farbmittel in zwei unmittelbar aufeinanderfolgenden Schritten zunächst reduktiv und dann oxidativ behandelt werden. Zu diesem Zweck soll eine Anlage entwickelt werden, die aus einer Elektrolysezelle und einer anschließenden Oxidationskammer besteht. In der Elektrolysezelle werden die Farbstoffe kathodisch reduziert. Die Reduktion hat das Ziel Azofarbstoffe, Anthrachinonfarbstoffe und Pigmente in eine wasserlösliche Form zu überführen. Infolge der Spaltung der Azofarbstoffe entstehen Produkte mit kleinerem Molekulargewicht. Vermutlich werden aromatische Amine gebildet, deren Hydrophilie im Vergleich zum Dispersionsfarbstoff deutlich größer ist.Die erhöhte Wasserlöslichkeit der Produkte ist entscheidend für die Wirksamkeit bzw. Wirtschaftlichkeit der anschließenden oxidativen Behandlung, die in homogener Phase weitaus effektiver abläuft. Der selektive Transfer der löslichen Produkte in die Oxidationskammer soll über einen Filtrationsprozess mit einer Ultra- bzw. Nanofiltrationsmembran erfolgen. Die Membran hält die dispers gelösten Farbstoffpartikel zurück. Zur Optimierung des Filtrationsprozesses und der Elektrolyse soll die Elektrolyse direkt an der Membran stattfinden. Zu diesem Zweck muss eine elektrisch leitende Membran entwickelt werden, an der gleichzeitig die kathodische Reduktion und der Filtrationsprozess ablaufen können. Bei dem Filtrationsprozess kommt es zu einer Anreicherung der Farbstoffpartikel an der Membran bzw. der Kathodenoberfläche. Auf diese Weise gelangt der Farbstoff in unmittelbaren Kontakt mit der Kathode, so dass der Elektronenübertrag auf das Substrat erleichtert wird.Bei der Entwicklung der Membran muss berücksichtigt werden, dass diese bei einem dauerhaften Einsatz in einer Abwasserbehandlungsanlage stabil gegenüber den elektrochemischen Vorgängen, höheren Drücken und der Katholytzusammensetzung ist.Ein weiteres Projektziel ist die Strukturaufklärung der Reduktions- und Oxidationsprodukte. Dazu werden im wesentlichem zwei Analysensysteme verwendet. Mit dem schon im Projekt OXITEX erfolgreich eingesetzten LC-QTOF können höhermolekulare bzw, wasserlösliche Produkte anhand der gemessenen Präzisionsmassehinsichtlich ihrer Summenformel und ggfs. Struktur chara.kterisiert werden. Kleinere unpolare Verbindungen werden mittels GCxGC-(TOF)MS erfasst. Hier ist eine Identifizierung der über Elektronenstoßionisierten Analyten mit umfangreichen Datenbanken bzw. Vergleichssubstanzen möglich. Die ermittelten Strukturen sollen Aufschluss über den Reaktionsverlauf geben. So soll z.B. die Frage geklärt werden, ob die Reduktion in höheren Konzentrationen Zwischenprodukte liefert, oder ob ein weitergehender bzw.unspezifischer Abbau vorliegt. Auch die Annahme, dass infolge der Reduktion aus Azoverbindungen vorwiegend aromatische Amine entstehen, soll untersucht werden.

Teilvorhaben 2: Alkalische Filterelution zum Nachweis von DNA-Schaeden^Erprobung, Vergleich, Weiterentwicklung und Beurteilung von Gentoxizitaetstests fuer Oberflaechengewaesser^Teilvorhaben 7: Comet-Assay an Primaerzellen und permanenten Zellinien von Fischen, Teilvorhaben 10: Weiterentwicklung chemisch-analytischer Verfahren zur Erfassung gentoxischer Substanzen in Waessern

Wesentliches Ziel des Teilprojekts des DVGW-Technologiezentrums Wasser ist die Entwicklung von empfindlichen Analyseverfahren zur Bestimmung gentoxischer Verbindungen in Oberflaechen- und Rohwaessern. Viele gentoxische Substanzen sind den aromatischen Stickstoffverbindungen zuzuordnen. Darum soll die Analytik von verschiedenen Vertretern dieser Verbindungsklasse (aromatische Amine, Nitroaromaten und aromatische Azoverbindungen) vorrangig bearbeitet werden. Durch eine Umfassende Literaturrecherche sollen diejenigen Vertreter ausgewaehlt werden, die industriell in groesseren Mengen produziert und eingesetzt werden. Fuer die ausgewaehlten Substanzklassen bzw. Einzelsubstanzen sollen empfindliche Analyseverfahren, v.a. unter Einsatz der GC/MS-Kopplung, entwickelt werden, um die zu erwartenden sehr niedrigen Konzentrationen im ng/l-Bereich nachweisen zu koennen. Im gemeinsamen Untersuchungsprogramm sollen die erarbeiteten Methoden angewendet werden, um durch die Einzelsubstanzanalytik moeglicherweise auftretende gentoxische Wirkeffekte erklaeren zu koennen. Ausserdem werden die Waesser hinsichtlich ihrer chemischen Zusammensetzung durch organische Gruppen- und Summenparameter charakterisiert.

Molekularepidemiologische Untersuchungen von Harnblasenkarzinomen bei Chemiearbeitern

Anlass: In einer Vielzahl von Anzeigen auf Verdacht einer BK 1301 wird ein Zusammenhang zwischen der berufsbedingten Exposition gegenüber aromatischen Amine und der Entstehung von Harnblasenkrebs vermutet. Derzeit lassen sich jedoch die beruflichen und außerberuflichen Risikofaktoren noch nicht ausreichend abgrenzen, da Rauchen für die Entstehung von Blasenkrebs ein starker Risikofaktor ist, wobei auch eine Belastung mit aromatischen Aminen besteht. Seit 10 Jahren wird ein hochbelastetes Kollektiv (ODIN) eingehend arbeitsmedizinisch betreut. Alle in diesem Kollektiv aufgetretenen Blasenkrebsfälle wurden erfasst. Das Tumormaterial wurde zur molekularbiologischen Analyse dem BGFA übermittelt. Ziel: Vor diesem Hintergrund soll der Hypothese nachgegangen werden, inwieweit es spezifische molekulare Marker gibt, die eine Abgrenzung von Confoundern (z.B. Rauchen) und eine spezifischere Zuordnung zu berufsbedingtem Blasenkrebs erlauben. Weiterhin sollen an diesem ODIN-Kollektiv molekulare Marker untersucht werden, die die Früherkennung von Blasenkrebs verbessern. Methodik: Expositionsabschätzung stoffspezifischer Belastungen und Ermittlung von Confoundern, somatische Mutationsanalyse im Tumormaterial, Polymorphismen ausgewählter Fremdstoff-metabolisierender Enzyme in genomischer DNA, Nachweis von Matrixproteinen als Tumormarker im Gewebeschnitt und im Urin, Nutzung von Urin als Probenmaterial zur Gewinnung von Zellen und Proteinmarkern für eine nicht-invasive Früherkennung genetischer Schäden.

Identifizierung ausgewählter Arzneimittel und ihrer Umweltmetabolite im Wasserkreislauf und ihre Bewertung aus gesundheitlicher, siedlungs- und trinkwasserhygienischer Sicht

A) Wirkstoffe in Humanarzneimitteln und ihre Metabolite sind eine sehr heterogene Gruppe zumeist synthetischer Chemikalien. Wegen der Art ihrer nach Gebrauch kaum vermeidbaren Metabolisierung und bestimmungsgemäßen Entsorgung besitzen sie ein hohes Gewässerverschmutzungs-Potenzial. Bisherige Ansätze zur Bewertung der jetzigen und künftigen Belastung des Menschen mit Arzneimittelresten auf dem Trinkwasserpfad sind in toxikologischer, analytischer und umweltchemischer Hinsicht unvollständig. Über das Vorkommen gesundheitlich kritischer Umweltmetabolite in den Gewässern einschließlich solchen, die der Trinkwassergewinnung dienen, ist bisher kaum etwas bekannt. Als kritische Metabolite kommen z.B. Nitrosamine, Hydrazinderivate, aromatische Amine, Nitroverbindungen und bestimmte Heterocyclen in Betracht. Die Entfernung solcher zumeist sehr gut löslicher Strukturen aus dem Roh-/Trinkwasser wäre schwierig. B) Handlungsbedarf: Zur Problemeingrenzung müssen gesundheitlich kritische Metabolite, die aus Arzneimitteln in der Umwelt entstehen könnten, strukturell eingegrenzt, in vitro erzeugt und identifiziert sowie ihr Vorkommen in der Umwelt untersucht und quantifiziert werden. Eintragspfade und Bildungswege/mechanismen sind aufzuklären, um das per Trinkwasser durch diese Stoffe für die menschliche Gesundheit anteilig verursachte Risiko schätzen zu können. Ausmaß, Herkunft und Höhe des Risikos werden die Grundlage für eventuell notwendige trinkwasserhygienische Maßnahmen und regulatorisch-toxikologische Bewertungen abgeben. C) Ziel: Die vorliegenden vereinzelten Daten zum Vorkommen von Arzneimittel-Umweltmetaboliten in Gewässern werden struktur- und ortsbezogen verdichtet und durch in vitro-Abbautests modellhaft ergänzt. Das Hauptaugenmerk ist auf Vorläuferverbindungen (sek. Amine, substituierte Hydrazine) zu legen, aus denen direkt karzinogene (wie Nitrosamine) oder anderweitig hochtoxische (z.B. immuntoxische) Umweltmetabolite entstehen könnten.

1 2 3 4 510 11 12