Spaltung und Extraktion von aromatischen Aminen aus Azofarbstoffen auf Textilien; Bestimmung bestimmter kanzerogener Verbindungen
Nitrat wird durch die Bakterien der Mundhoehle im Durchschnitt zu etwa 10 Prozent zu Nitrit reduziert. Dieses gelangt mit dem Speichel in den Magen, wo die sauren Bedingungen eine Nitrosierung von Nahrungskomponenten foerdern. Die entstehenden Nitroso-verbindungen werden z.T. enzymatisch, z.T. spontan, in chemisch reaktive Produkte umgewandelt. Eine Reaktion dieser Abbauprodukte mit der Erbsubstanz DNA kann zur Krebsausloesung beitragen. Im Rahmen frueherer Dissertationen wurde gezeigt, dass Alkylharnstoffe, aromatische Amine, sowie einzelne Aminosaeuren als wichtige Vorlaeufer in Frage kommen. Nicht zuletzt wegen der steigenden Nitratbelastung durch unsere Ernaehrung ist es deshalb wichtig, die endogene Bildung von kanzerogenen Nitrosoverbindungen fuer verschiedene Stoffklassen zu analysieren und in Relation zu setzen mit der Aufnahme von vorgebildeten Nitrosoverbindungen.
In Innenräumen findet sich eine Vielzahl von Chemikalien, die aus Gegenständen, Materialien oder durch menschliche Aktivitäten freigesetzt werden und ein Risiko für aquatische Ökosysteme darstellen können, falls entsprechende Chemikalien in den Wasserkreislauf gelangen. Wir stellen die Hypothese auf, dass aromatische Amine (AA), die aus Innenräumen emittiert werden, in Oberflächengewässer eingetragen werden und dort signifikant zur Belastung und der damit verbundenen Mutagenität beitragen. Gewaschene Textilien, die durch Emissionsquellen in Innenräumen mit AA kontaminiert sind, wirken als Überträger dieser Substanzen in Abwässer. Die Berücksichtigung dieses Übertragungsweges kann uns helfen, das Auftreten von AA ohne klare Emissionsquellen in Oberflächengewässern besser zu verstehen. In vielen Studien wird berichtet, dass AAs, welche in Innenräumen beispielweise durch Rauchen und Grillen von Fleisch entstehen, die Hauptursache für Mutagenität in Oberflächengewässern und häuslichen Abwässern sind. Sie können durch gasförmige und Partikeldepostion auf Textilien adsorbiert werden. Daher wollen wir den Übertragungsweg von AA aus Innenräumen in Oberflächengewässer im Hinblick auf die folgenden vier Aspekte untersuchen: (i) Stoffgruppen-spezifisches Non-target-Screening zum Nachweis der gesamten Verbindungsklasse in allen Matrizes entlang des dargestellten Expositionspfades, d.h. in Extrakten von Textilien, Staub, Waschwasser, Abwasser und Oberflächenwasser; (ii) Instrumente zum Monitoring aromatischer Amine aus Abwässern und Oberflächengewässern mittels selektiver Anreicherung, um ihren Verbleib in Kläranlagen und das damit verbundene Risiko für Wasserorganismen zu entschlüsseln; (iii) Charakterisierung der Aufnahme AA durch Textilien durch gasförmige und Partikeldeposition und ihre Verteilung in Innenräumen durch Expositionsexperimente im Labor und realen Innenräumen und (iv) Anwendung aller entwickelten Instrumente und Methoden in Kombination mit diagnostischen Mutagenitätstests zur Aufklärung der angenommenen Emissionswege. Hierbei werden Textilbelastung in Innenräumen mit verschiedenen AA-Quellen berücksichtigt, Waschexperimente durchgeführt und Proben aus Kläranlagen und Abwasserauffangbecken entnommen, um die quellenbezogenen Muster und die wichtigsten AA zu identifizieren, die die beobachtete mutagene Aktivität verursachen. Mit diesem Ansatz wollen wir die Kenntnislücke zwischen Innenraumexpsosition und der Umweltexposition schließen. In diesem Projekt wird das Fachwissen eines deutschen und eines tschechischen Forschungsinstituts kombiniert. Es umfasst das Target-, Suspect- und Non-target-Screening nach organischen Schadstoffen in komplexen Umweltmischungen, die Detektion von Mutagenität und den zugrundeliegenden Chemikalien in Oberflächenwasser mit wirkungsorientierter Analytik und passiver Probenahme in verschiedenen Umweltmatrizes, sowie die Berücksichtigung von Verteilungsmechanismen von Verbindungen in Innenräumen.
Der Stoffwechsel aromatischer Amine wird mit dem Ziel untersucht, die fuer die akut toxischen und krebserzeugenden Wirkungen verantwortlicher Metaboliten zu identifizieren und die Ursachen fuer ihre gewebespezifische Wirkung aufzuklaeren. Das Studium der Abhaengigkeit der metabolischen Aktivierung und Inaktivierung von der Dosis soll dabei einen Beitrag zur Risikoabschaetzung im Bereich niedriger Dosen leisten.
Azofarbstoffe stellen die mengenmaessig wichtigste Klasse an Farbstoffen dar. Jaehrlich werden mehrere hunderttausend Tonnen dieser Farbstoffe produziert und fuer die Faerbung von Papier, Leder, Textilien und anderen Artikeln verwendet. Die meisten industriell eingesetzten Azofarbstoffe enthalten neben der Azobindung 1-3 Sulfonsaeuregruppen und sind unter aeroben Bedingungen biologisch nicht abbaubar. Im Institut fuer Mikrobiologie wird daher versucht, eine Spaltung der Azobindung durch anaerobe Reduktion zu erreichen und diese anaerobe Vorbehandlung mit einem nachfolgenden aeroben Abbau der entstandenen sulfonierten Aminoaromaten zu verbinden. Hierdurch konnte an verschiedenen Modellverbindungen eine Mineralisierung sulfonierter Azofarbstoffe gezeigt werden. Die Kopplung der anaeroben und aeroben Verfahren wurde einerseits mit immobilisierter Biomasse in einem Bioreaktor oder mit suspendierten Zellen durch einen zweistufigen Anaerob/aerob-Prozess erreicht. Die Steigerung der anaeroben Reduktionsraten durch die Zugabe von redoxaktiven Chinonen wird derzeit eingehend untersucht, mit dem Ziel, die Raum-Zeit-Ausbeuten bei dem anaeroben Reduktionsprozess zu erhoehen. Des weiteren wird versucht, die Faehigkeit einiger hochgradig adaptierter Bakterien zur aeroben Reduktion von Azofarbstoffen zu nutzen, indem die Azoreduktasen kloniert und mittels genetischer Techniken fuer den Abbau industriell relevanter Azofarbstoffe optimiert werden sollen.
Objective: The main objectives of the project are: 1 Determination of the nitrogen compounds which can lead to the formation of N-nitrosamines in coking plants and steelworks. 2 Investigation of artefact formation during sampling. 3 Development of new sampling and analysis techniques and evaluation of whether existing methods of analysis are suitable for N-nitrosamines. 4 Harmonisation (differences, correlations) of the procedures developed by each of the participating institutes and establishing of a standard procedure for use in all countries. 5 First measurements of N-nitrosamines to obtain tenable results which can serve as a basis for EC legislation. The focus will be on measurements at workstations in different types of plant in the coal and steel industries of the participating countries. General Information: Nitrosamines are known carcinogens. They are formed by reaction of preferentially secondary amines with nitro sating agents, both of which may occur at workplaces as undesirable by-products or emissions. Nitrosamines have so far been identified in the ambient air in the metal processing, rubber and leather industries. Bituminous coals used in the coking industry contain 1-2 per cent nitrogen, most of which ends up either in the tar fraction or, following gas scrubbing, as ammonium sulphate. However, coke oven leaks (from charging lids, doors and ascension pipes) may lead to uncontrolled emissions of mainly aromatic amines, which in the presence of nitrous gases (NO and NO2) may be transformed into N-nitrosamines. Formation of N-nitrosamines must also be expected in the steel industry, originating from cooling lubricants containing nitrogen and hardeners used in foundries. A major problem in the measurement of nitrosamines is artefact formation during the sampling process. It has been shown that in this case amines are also retained which react with NOx traces in the ambient air to form N-nitrous amines though only when they reach the substrate. This phenomenon is observed particularly in the presence of aromatic amines, which is specifically the case in coking plants. The pollutant concentrations identified should not be associated with a particular pollution source, as they are caused entirely by artefact formation as a result of subsequent notarisation on the sampling medium. In order to protect workers and the population from the toxicological effects of N-nitrosamines, it is necessary to act upon the conditions favouring the formation of these noxious substances in the environment. To be able to do this it is necessary to have information on concentrations, types of compound and sources of emission of N-nitrosamines and amines (their precursors). The planned research and development project is concerned with the problem of N-nitrosamines in the environment of steelworks and associated coking plants.
Fruehere Untersuchungen haben gezeigt, dass sulfonierte aromatische Amine, welche durch reduktive Spaltung von AZO-Farbstoffen gebildet werden, nicht rasch abbaubar sind. Um das Umweltrisiko abzuschaetzen, wurde eine Anzahl von Vertretern dieser Stoffklasse auf ihre Umwelttoxizitaet hin untersucht. Biologischer Abbau, Fisch, Daphnien, und Algentoxizitaet wurden nach den Vorschriften der EG-Richtlinien (6. Aenderung, Anhang VII der Basisrichtlinie) untersucht.
Mit einem neuartigen Verfahren sollen im Abwasser der Färberei und Druckerei enthaltene Farbmittel, lösliche wie dispergierbare oder unlösliche Farbmittel in zwei unmittelbar aufeinanderfolgenden Schritten zunächst reduktiv und dann oxidativ behandelt werden. Zu diesem Zweck soll eine Anlage entwickelt werden, die aus einer Elektrolysezelle und einer anschließenden Oxidationskammer besteht. In der Elektrolysezelle werden die Farbstoffe kathodisch reduziert. Die Reduktion hat das Ziel Azofarbstoffe, Anthrachinonfarbstoffe und Pigmente in eine wasserlösliche Form zu überführen. Infolge der Spaltung der Azofarbstoffe entstehen Produkte mit kleinerem Molekulargewicht. Vermutlich werden aromatische Amine gebildet, deren Hydrophilie im Vergleich zum Dispersionsfarbstoff deutlich größer ist.Die erhöhte Wasserlöslichkeit der Produkte ist entscheidend für die Wirksamkeit bzw. Wirtschaftlichkeit der anschließenden oxidativen Behandlung, die in homogener Phase weitaus effektiver abläuft. Der selektive Transfer der löslichen Produkte in die Oxidationskammer soll über einen Filtrationsprozess mit einer Ultra- bzw. Nanofiltrationsmembran erfolgen. Die Membran hält die dispers gelösten Farbstoffpartikel zurück. Zur Optimierung des Filtrationsprozesses und der Elektrolyse soll die Elektrolyse direkt an der Membran stattfinden. Zu diesem Zweck muss eine elektrisch leitende Membran entwickelt werden, an der gleichzeitig die kathodische Reduktion und der Filtrationsprozess ablaufen können. Bei dem Filtrationsprozess kommt es zu einer Anreicherung der Farbstoffpartikel an der Membran bzw. der Kathodenoberfläche. Auf diese Weise gelangt der Farbstoff in unmittelbaren Kontakt mit der Kathode, so dass der Elektronenübertrag auf das Substrat erleichtert wird.Bei der Entwicklung der Membran muss berücksichtigt werden, dass diese bei einem dauerhaften Einsatz in einer Abwasserbehandlungsanlage stabil gegenüber den elektrochemischen Vorgängen, höheren Drücken und der Katholytzusammensetzung ist.Ein weiteres Projektziel ist die Strukturaufklärung der Reduktions- und Oxidationsprodukte. Dazu werden im wesentlichem zwei Analysensysteme verwendet. Mit dem schon im Projekt OXITEX erfolgreich eingesetzten LC-QTOF können höhermolekulare bzw, wasserlösliche Produkte anhand der gemessenen Präzisionsmassehinsichtlich ihrer Summenformel und ggfs. Struktur chara.kterisiert werden. Kleinere unpolare Verbindungen werden mittels GCxGC-(TOF)MS erfasst. Hier ist eine Identifizierung der über Elektronenstoßionisierten Analyten mit umfangreichen Datenbanken bzw. Vergleichssubstanzen möglich. Die ermittelten Strukturen sollen Aufschluss über den Reaktionsverlauf geben. So soll z.B. die Frage geklärt werden, ob die Reduktion in höheren Konzentrationen Zwischenprodukte liefert, oder ob ein weitergehender bzw.unspezifischer Abbau vorliegt. Auch die Annahme, dass infolge der Reduktion aus Azoverbindungen vorwiegend aromatische Amine entstehen, soll untersucht werden.
A) Problemstellung: Mit mehr als 14000 Neuerkrankungen pro Jahr ist das Blasenkarzinom die dritthäufigste Krebsart der Männer; Frauen sind mit ca. 5000 Fällen deutlich weniger betroffen. Die Hälfte der Erkrankungen werden auf das Rauchen zurückgeführt; die Ursachen für die übrigen 50 Prozent der Fälle ist noch weitgehend ungeklärt. Es gibt jedoch den begründeten Verdacht, dass diese Ursachen umweltbedingt sind. Gelingt es, die Risikofaktoren der Nichtraucher zu entdecken, dann kann die Anzahl der Neuerkrankungen um diesen Einfluss verringert werden. Nach neueren Erkenntnissen kann Blasenkrebs durch aromatische Amine (2-Aminonaphtalin und 4-Aminobiphenyl) ausgelöst werden. Diese Stoffe, die von der Arbeitsmedizin bereits als kanzerogen eingestuft wurden, finden sich in erhöhtem Maße in Zigarettenrauch. Eine Studie, die im Auftrag des BMU/UBA pilothaft durchgeführt wurde, konnte im Urin von Rauchern, aber auch von Nichtrauchern aromatische Amine nachweisen. Bei den Nichtrauchern konnte sicher gestellt werden, dass keine Aufnahme durch Passivrauchen vorlag. Aromatische Amine sind aber auch in bestimmten Nahrungsmitteln, Textilstoffen, Dieselabgas etc enthalten. Handlungsbedarf: Im Vorhaben soll im Rahmen, einer Kohortenstudie das Vorkommen von Amino-/Nitroaromate und die Varianz derselben der im Urin von Nichtrauchern verifiziert werden und Belastungswege und -quellen eruiert werden. Besonderes Augenmerk wird auf die Untersuchung der Quellen Dieselruß, Textilimprägniermittel und -farbstoffe, Nahrungsmittel u. a. gelegt. C) Ziel des Vorhabens ist: Im Rahmen des Aktionsprogramms Umwelt und Gesundheit, das von BMU und BMG gemeinsam durchgeführt wird, sollen die umweltbedingten Ursachen für die Humanbelastung mit Substanzen, die für die Erkrankung von Nichtrauchern an Blasenkrebs verdächtigt werden, eruiert werden.
| Origin | Count |
|---|---|
| Bund | 81 |
| Land | 31 |
| Type | Count |
|---|---|
| Chemische Verbindung | 13 |
| Daten und Messstellen | 31 |
| Förderprogramm | 68 |
| Gesetzestext | 2 |
| License | Count |
|---|---|
| geschlossen | 13 |
| offen | 68 |
| unbekannt | 31 |
| Language | Count |
|---|---|
| Deutsch | 110 |
| Englisch | 37 |
| Resource type | Count |
|---|---|
| Keine | 102 |
| Webseite | 10 |
| Topic | Count |
|---|---|
| Boden | 71 |
| Lebewesen und Lebensräume | 92 |
| Luft | 68 |
| Mensch und Umwelt | 112 |
| Wasser | 72 |
| Weitere | 104 |