LIAS is a global information system for Lichenized and Non-Lichenized Ascomycetes. It includes several interoperable data repositories. In recent years, the two core components ‘LIAS names’ and ‘LIAS light’ have been much enlarged. LIAS light is storing phenotypic trait data. They includes > 10,700 descriptions (about 2/3 of all known lichen species), each with up to 75 descriptors comprising 2,000 traits (descriptor states and values), including 800 secondary metabolites. 500 traits may have biological functions and more than 1,000 may have phylogenetic relevance. LIAS is thus one of the most comprehensive trait databases in organismal biology. The online interactive identification key for more than 10,700 lichens is powered by the Java applet NaviKey and has been translated into 19 languages (besides English) in cooperation with lichenologists worldwide. The component ‘LIAS names’ is a platform for managing taxonomic names and classifications with currently >50,000 names, including the c. 12,000 accepted species and recognized synonyms. The LIAS portal contents, interfaces, and databases run on servers of the IT Center of the Bavarian Natural History Collections and are maintained there. 'LIAS names' and ‘LIAS light’ also deliver content data to the Catalogue of Life, acting as the Global Species Database (GSD) for lichens. LIAS gtm is a database for visualising the geographic distribution of lichen traits. LIAS is powered by the Diversity Workbench database framework with several interfaces for data management and publication. The LIAS long-term project was initiated in the early 1990s and has since been continued with funding from the DFG, the BMBF, and the EU.
Sprengstoffe, v.a. TNT und Hexogen (RDX), sind als Kontaminationen in den Boden eingetragen worden und gelangen aufgrund ihrer geringen Wasserlöslichkeit langsam in das Grundwasser. Aufgrund ihrer Umwetlttoxizität ist eine Sanierung kontaminierter Standorte nötig. Bisherige Untersuchungen zum Abbau dieser Xenobiotika haben sich auf die oxidativen Enzyme von Pilzen aus fremden Habitaten (v.a. Weißfäule-Pilzen) konzentriert. Unter Ansatz basiert hingegen auf der Charakterisierung des Abbau-Potentials der nativen Bodenmycota. TNT wird durch Nitratreduktase-Aktivität reduziert und in die Humus-Schicht eingebunden, während das instabile heterozyklische RDX-Moleküle durch Reduktion gespalten und somit mineralisiert wird. TNT-Reduktion und RDX-Abbau werden durch eine große Diversität an bodenbewohnenden Pilzen durchgeführt, v.a. Zygomyceten (Cuninghamella, Absidia) und imperfekte Stadien von Ascomyceten (Penicillium, Trichoderma). Unsere derzeitigen Studien befassen sich mit der Einbringung der RDX-Fragmente in den pilzlichen Sekundärmetabolismus.
ResiDevo zielt darauf ab, die Mechanismen zu verstehen, die der Diversität und Evolution der Krankheitsresistenz gegen nekrotrophe pilzliche Krankheitserreger in Pflanzen zugrunde liegen. Unsere Schlüsselhypothese, abgeleitet aus unseren vorläufigen Daten und evolutionären Theorien ist, dass viele QDR-Gene früh in der Evolution der Angiospermen entstanden sind und unterschiedliche Regulationsmechanismen erworben haben, die zu unterschiedlichen QDR-Reaktionen in modernen Pflanzenpopulationen führen. Das Ziel dieses Vorhabens ist es, globale Reaktionen auf nekrotrophe Pilze in Pflanzen aus zwei botanischen Familien zu vergleichen, um daraus allgemeine Regeln abzuleiten, die der Diversifizierung dieser Reaktionen auf verschiedenen evolutionären Skalen (intra- und interspezifisch) zugrunde liegen. Wir verfolgen vier Hauptziele, indem wir vergleichende Analysen an Pflanzenarten aus den Familien Brassicales (Arabidopsis thaliana und andere) und Solanales (Solanum chilense u.a.) und zwei Ascomyceten-Pathogenen mit ähnlicher Lebensweise (nekrotroph, foliar, asexuell) und kontrastierendem Wirtsspektrum (Generalist und Spezialist) als Organismen für diesen Ansatz.Wir werden: 1) Die intra- und interspezifische Variation in den QDR-Phänotypen der Pflanzen charakterisieren und die wichtigsten quantitativen Trait-Loci (QTLs) der Resistenz identifizieren. 2) Die Vielfalt der transkriptionellen Reprogrammierung während der QDR auf verschiedenen Ebenen dokumentieren: Spezies, Familie, Ordnung. 3) die Evolution von Sequenz und Expression von Genen, die auf Pilzpathogene reagieren, auf Populations-, Gattungs- und Familienebene untersuchen und 4) Schlüsselkomponenten der QDR validieren und die genomweiten Auswirkungen der Rekrutierung von Transkriptionsfaktoren in die QDR untersuchen.Diese interdisziplinäre Arbeit wird noch einzigartige Datensätze für evolutionäre Studien von Pflanzen-Mikroben-Interaktionen erzeugen, einschließlich: 1) Phänotypische Diversität auf einer vergleichbaren Skala für verschiedene Pflanzen, die mit Pilzen aus zwei verschiedenen Klassen der Ascomyceten inokuliert wurden. 2) Ein bisher einzigartiger Transkriptomik-Datensatz, der es erlaubt, eine Reihe wichtiger theoretischer Vorhersagen zu testen und nach Genen zu suchen, die zum QDR-Phänotyp in verschiedenen Spezies beitragen. 3) Vollständige evolutionäre Analysen von pathogen-responsiven Genen in verschiedenen Pflanzenlinien und 4) Eingehende funktionelle Charakterisierung der Rolle einiger Transkriptionsfaktoren in QDR und der genomweiten Konsequenzen ihrer natürlichen Sequenz-/Regulationsdiversifizierung.ResiDEvo wird zu konzeptionellen Fortschritten bei der Evolution des pflanzlichen Immunsystems führen. Es wird die Rolle neuartiger Resistenzmechanismen, die über zwei botanische Familien hinweg konserviert sind, identifizieren und validieren und dank der Daten, die an einbezogenen kultivierten Arten generiert wurden, vielversprechende Anwendungsperspektiven bieten.
Die Virulenz des Pilzes Cryphonectria parasitica als Erreger des Esskastanienrindenkrebses kann durch ein natürlich vorkommendes Pilzvirus wesentlich vermindert werden. Dies wird als Hypovirulenz bezeichnet. Hypovirulente, also Virus-tragende Pilzstämme können sich in der Natur mittels Konidien vermehren und ihren Hypovirulenz-Faktor in kompatible Pilzstämme übertragen. Während in der Ortenau die Ausbreitung von natürlich vorkommender Hypovirulenz in zwei Kompatibilitätsgruppen beobachtet werden konnte, war dies bisher in den Cryphonectria-Befallsgebieten in der Südlichen Weinstraße nicht bekannt. Daher wurden hypovirulente Pilzstämme in bisher virulent befallene Esskastanien, angepasst an unterschiedliche Kompatibilitätsgruppen versuchsweise eingebracht. Der Erfolg der Beimpfung mit dem Hypovirulenzfaktor soll im Projekt untersucht werden. Neue Erkenntnisse dazu und zu weiteren pilzgenetischen Untersuchungen sollen publiziert werden.
Dark Septate Endophytes (DSEs) sind eine polyphyletische Gruppe innerhalb der Ascomyceten, die Pflanzenwurzeln besiedeln und durch hohe Melaninkonzentrationen in ihren Hyphen charakterisiert sind. Möglicherweise ist die Melanisierung bei Pflanzen-DSE-Assoziationen von Vorteil und eine Reaktion auf eine Vielzahl biotischer und abiotischer Stressfaktoren. Es gibt jedoch noch keine Beweise dafür, dass die hohe Melanisierung von DSEs zur erhöhten Stresstoleranz beiträgt. Es ist ebenfalls wahrscheinlich, dass Melanin eine Rolle bei der Penetration der Wurzeloberfläche durch die pilzlichen Hyphen und der anschließenden Besiedelung der Wurzelrinde spielt. Hier besteht jedenfalls eine Analogie zu einigen ebenfalls melanisierten, pathogenen Pilzen die sowohl tierische, als auch pflanzliche Gewebe erfolgreich infizieren. In diesem deutsch-französischen Kooperationsprojekt wollen wir den Melanisierungsprozess im DSE-Modell Leptodontidium sp. besser verstehen, einschließlich der Untersuchung von Regulationsmechanismen, die diese Melanisierung modulieren. Darüber hinaus werden komplementäre genetische, pharmakologische, physikalisch-chemische, physiologische und Omics-Ansätze der deutsch-französischen Partner genutzt, um zu entschlüsseln welche Rolle Melanin zum einen bei der Besiedelung von Pflanzen und bei der hohen Toleranz von Leptodontidium sp. gegenüber einer Reihe von abiotischen und biotischen Stressfaktoren spielen könnte. Das Konsortium besteht aus vier Forschergruppen, die über komplementäre Fachkenntnisse in den Bereichen Mikrobiologie, Interaktionen zwischen Pflanzen und Mikroorganismen unter Stressbedingungen, Pilzökologie, Multi-Omic-Analysen und Bioinformatik verfügen. Besondere Techniken und Themen sind die genetische Transformation von DSEs und die Rasterkraftmikroskopie (Université de Lorraine - P1), miRNA-Analysen und Metallstress (Université de Bourgogne Franche-Comté - P2), Epigenetik und RNAseq-Analysen (Friedrich-Schiller-Universität Jena - P3) sowie Interaktionen zwischen Pilzen und Mykoparasiten (Hochschule Wismar - P4). Im deutsch-französichen Team werden diese gebündelt um die Funktion Melanins für DSEs und für DSE-Pflanzen-Interaktionen aufzuklären. Das Verständnis wie Melanine die Toleranz gegenüber Umweltstress für DSEs und für die von DSEs besiedelten Pflanzen erhöhen, sollte dazu beitragen, diese wichtige Pilzressource für die nachhaltige und wirtschaftlich sinnvolle Produktion von Nutzpflanzen zu nutzen. Dies schließt auch die Betrachtung mykophager und pflanzenpathogener Organismen in der Rhizosphäre, die Exposition gegenüber Schadstoffen und Auswirkungen des Klimawandels wie Trockenheit und Hitze zwingend mit ein. Folglich streben wir auch eine weite Verbreitung der Projektergebnisse an, nicht nur in der wissenschaftlichen Gemeinschaft, sondern auch bei Interessengruppen aus Landwirtschaft, Gartenbau und der Forstwirtschaft.
Böden sind lebenswichtige Bestandteile terrestrischer Ökosysteme. Wie Energie- und Materieflüsse in Böden in Zusammenhang stehen mit der strukturellen und funktionellen Vielfalt des Bodenmikrobioms und seiner Wechselwirkung mit höheren trophischen Ebenen ist jedoch weitestgehend unverstanden. In diesem Antrag möchten wir eine synthetische mikrobielle Bodengemeinschaft verwenden, die die wichtigsten mikrobiellen Taxa und mikrobielle Predatoren im Boden wiederspiegelt, um Zusammenhänge zwischen dem Energie- und Materieeintrag in den Boden, der Struktur und Funktion des Bodenmikrobioms und den daraus resultierenden Energie- und Materieflüssen zu untersuchen. Zu diesem Zweck wurde eine synthetische Bodengemeinschaft konzipiert, die aus 25 Repräsentanten der Proteobakterien, Acidobakterien, Actinobakterien, Bacteroidetes, Verrucomicrobia, Chloroflexi und Gemmatimonadetes sowie einem typischen Bodenascomyceten besteht. Predatoren werden durch bakterien- und pilzfressende Nematoden sowie bakterienfressende Myxobakterien vertreten sein. In Arbeitspaket (AP) 1 werden wir in einem multidisziplinären Großexperiment mit sechs weiteren SPP-Partnern Hypothese A des SPP testen: Das Mikrobiom moduliert die Energiefreisetzung und den Materieumsatz entlang verschiedener Energieverbrauchskanäle. Der Schwerpunkt dieses AP liegt auf der Auswirkung von bakterienfressenden Predatoren und der Konkurrenz zwischen ihnen auf die Struktur des Mikrobioms und dadurch modulierte Kohlenstoffflüsse, Kohlenstoffreservoirs und Wärmefreisetzung in einer synthetischen Bodengemeinschaft. Parallel dazu werden wir die Auswirkungen funktioneller Gruppen von Predatoren (bakterienfressende vs. pilzfressende) auf die Struktur des Mikrobioms, die Kohlenstoffflüsse und die Wärmefreisetzung in einer natürlichen Bodengemeinschaft identifizieren. In AP2 werden wir die synthetischen Bodengemeinschaft verwenden, um Hypothese B des SPP zu untersuchen: Energie- und Materieeintrag im Boden beeinflussen die biologische Komplexität. Hier wollen wir verstehen, wie Modellsubstrate mit unterschiedlicher Energieausbeute und Abbaubarkeit (Cellulose, Stärke) die Struktur der synthetischen Bodengemeinschaft mit und ohne Einfluss der Predatoren beeinflussen. Darüber hinaus werden wir untersuchen, wie das primäre Energiesubstrat die Expression chemischer Abwehrmechanismen zwischen Mikrobiom-Mitgliedern beeinflusst und sich somit indirekt auf die Kohlenstoffflüsse und -reservoirs sowie die Wärmefreisetzung auswirkt. Wir sind überzeugt, dass eine synthetische Bodengemeinschaft ein wesentlicher Schritt in Richtung eines konzeptionellen Verständnisses ökologischer Wechselwirkungen in Böden ist. Dieser systembiologische Ansatz wird ermöglichen zu verstehen wie das Bodenmikrobiom und höhere trophische Ebenen (AP1) sowie das primäre Energiesubstrat (AP2) Energie- und Kohlenstoffflüsse im Boden beeinflussen.
Es wird die taxonomische Revision kritischer Gattungen der cyanobakteriellen Flechtenfamilie Lichnaceae (Lichinales, lichenisierte Ascomycetes) angestrebt. Dazu sollen auch Fragen zur Stammesgeschichte und Phylogeographie der Gattungen und ihrer Arten geklärt werden. Die Gattungen Lichinella (inkl. Gonohymenia), Peccania und Pterygiopsis gehören zu den artenreichsten der Lichinaceae. Die Sippen weisen in den Trockengebieten der Erde eine hohe Artenvielfalt auf. Lokal können sie in kryptogamenreichen Habitaten beträchtlichen Anteil an der Phytodiversität haben. Das trifft auch auf die Wüstengebiete im Südwesten der USA und im nördlichen Mexiko zu. Die rezenten Verbreitungsmuster von Arten der Lichinaceae im Gebiet sind jedoch sehr verschieden. Neben Neoendomiten kommen auch Sippen mit weltweiter, aber oft disjunkter Verbreitung vor. Letztere sind offenbar Plaeoendemiten. Die Daten sind jedoch sehr lückenhaft, was auf die gesamte Familie zutrifft. Hinzu kommen noch unbeschriebene Taxa sowohl aus Südwest Nordamerika als auch aus anderen Verbreitungszentren wie dem Nahen und Mittleren Osten. Es soll daher eine geographisch abgegrenzte Revision kritischer Sippen mit der Frage nach deren evolutiver Entfaltung weltweit verbunden zu werden.
Die durch den Pilzerreger Verticillium longisporum bei Brassicaceen hervorgerufene vaskuläre Welke ist eine Krankheit, die in Nordeuropa zunehmend an Bedeutung gewinnt. Die Pathogenese und die Abwehrmechanismen dieser Krankheit sind nicht gut verstanden, vor allem weil der Pilz über die Wurzeln eindringt und versteckt im Xylem lebt. Ziel dieses Projekts ist es, die Rolle und den Transportmechanismus extrazellulärer RNAs (exRNAs) bei der Interaktion zwischen dem Ascomyceten Verticillium longisporum (Vl) und der Kulturpflanze Brassica napus zu untersuchen. Dieses Pathosystem ermöglicht es uns, den Apoplasten und das Gefäßsystem der Pflanze als Schauplatz der Auseinandersetzungen zwischen Wirt und Pilz zu untersuchen. Das Projekt befasst sich mit drei Hauptfragen: (a) wie trägt der exRNA-Austausch zwischen dem pathogenen Pilz und dem Pflanzenwirt zum Infektionsprozess bei, (b) wie können exRNAs und Komplexe aus RNAs und RNA-bindenden Proteinen (RBPs) gezielt zwischen Wirt und Pathogen ausgetauscht werden, und (c) welche Funktionen haben exRNAs in Wirtszellen? In der ersten Förderperiode haben wir erfolgreich extrazelluläre Vesikel (EV)-assoziierte Proteine und RNAs aus Pilzflüssigkulturen charakterisiert. Außerdem konnten wir die phytotoxische Wirkung der EV-Fraktion aus V. longisporum in B. napus nachweisen. In der zweiten Förderperiode zielt unser Projekt darauf ab, den Mechanismus des exRNA-Transports vom Pilz zur Pflanze näher zu charakterisieren, den RNA-Transfer zu bestätigen und die Auswirkungen auf die Wirtszellen zu untersuchen. Während der ersten Förderperiode stellte sich heraus, dass sauberere EVs für die Bestandsanalysen von Vorteil wären. Daher werden wir in der zweiten Förderperiode unsere biochemische Expertise nutzen, um EVs aus Kultur zu subfraktionieren, Vl-EV-Marker zu etablieren, die EV-assoziierte Fraktion von Vl-infizierten Pflanzen zu charakterisieren, den RNA-Transfer auf Pflanzenzellen zu bestätigen und die Funktionen von Kandidaten-RNAs und RNA-bindenden Proteinen (RBPs) zu entschlüsseln. Durch die Kombination der Erkenntnisse aus den anderen Projekten des RU5116-Konsortiums können die in diesem Projekt gewonnenen Erkenntnisse in Zukunft in innovative RNA-basierte Pflanzenschutzstrategien umgesetzt werden.
The hypothesis that the dark septate root endophyte Phialocephala fortinii provides biological control of Phytophthora diseases to trees is tested under two temperature regimes. Phytophthora spp. are very aggressive plant pathogens affecting also woody plants in the natural environment. Studies on biological control of Phytophthora diseases are scarce, but antagonistic effects of endophytic fungi have been demonstrated in a few cases. In temperate and boreal forests, conifers are much less susceptible to Phytophthora diseases than deciduous broadleaf trees, whereas their roots are very frequently colonized by dark septate endophytes (DSE) with Phialocephala fortinii s.l., a supposedly asexual ascomycete, being the dominant component. This fungus also colonizes hardwoods, but to a lesser degree. Recent population genetic studies showed that P. fortinii s.l. consists of at least 15 reproductively isolated cryptic species (CSP). We hypothesise that P. fortinii s.l. may protect its host from Phytophthora disease depending on CSP and environmental conditions. A model system will be developed and applied to test this hypothesis using Norway spruce (Picea abies), beech (Fagus sylvatica) and Phytophthora citricola. The experimental program will be multidisciplinary in approach and include molecular, mycological, phytopathological (infection experiments, epifluorescence microscopy) and statistical methods.
Bäumen im innerstädtischen Bereich, insbeondere Straßenbäumen, steht in der Regel nur ein eingeschränkter Lebensraum zur Verfügung. Vor allem der verdichtete und versiegelte Wurzelbereich wirkt sich nachhaltig auf die Vitalität der Bäume aus. Oft kommen mechanische Verletzungen hinzu, die den Eintritt für holzzerstörende Pilze begünstigen. Schäden an Bäumen werden auch durch Streusalz, Erdgas und Hundeurin verursacht. Geschwächte und bereits geschädigte Bäume sind besonders anfällig für Krankheiten und Schädlinge. Aus der Vielzahl der Schaderreger an Berliner Bäumen einige Beispiele: Fast alljährlich werden vor allem Sommer-Linden von Spinnmilben befallen. Heiße und trockene Jahre begünstigen ihre Vermehrung. Befallene Bäume zeigen bereits im Juni ein Vergilben der Blätter im unteren Kronenbereich. Bei starkem Befall kann sich das bis in die Krone hinauf fortsetzen. Es kommt dabei zum fortschreitenden Verbräunen und Vertrocknen der Blätter, was zu frühem Laubfall führt. Blattläuse sind besonders an jungen Blättern und Trieben zu finden. In trockenen und heißen Jahren werden verstärkt Linden von Blattläusen befallen. Die klebrigen Ausscheidungen der Blattläuse, der sog. Honigtau, sind wiederum Nahrungsgrundlage für Rußtaupilze, erkennbar an den geschwärzten Blättern. Verklebte und verschmutzte Flächen unter den Linden, oft auch auf Autos, sind eine weniger beliebte Folgeerscheinung. Die Blattbräune oder Blattnervenkrankheit bei Platanen ist auf einen Pilz ( Apiognomonia veneta ) zurückzuführen, der braune Blattflecken entlang der Blattadern verursacht. Bei Befall kommt es bereits im Frühjahr zum Welken und Vertrocknen der jungen Austriebe, Starkäste werden nicht befallen. Die Kastanien-Miniermotte ( Cameraria ohridella ), ein Insekt, das erst 1985 in Mazedonien entdeckt wurde, ist in Berlin erstmalig 1998 festgestellt worden. Befallen werden vorwiegend weißblühende Rosskastanien. Die Larven der Kastanien-Miniermotte zerstören durch ihre Fraßtätigkeit das Innere der Blätter, was äußerlich an einer hellbraunen Fleckung erkennbar ist. Bei starkem Befall kommt es zum vorzeitigen Blattfall. Jahrelanger Befall führt zur Schwächung des Baumes. Die Wollige Napfschildlaus ( Pulvinaria regalis ), gehört zu den saugenden Schadorganismen, in Berlin wurde sie erstmals im Jahr 2000 festgestellt. Die Larven des Schädlings setzen sich auf Blättern und Zweigen fest und saugen hier den Pflanzensaft. Die Wollige Napfschildlaus bevorzugt insbesondere Linden und Rosskastanien und ist hier durch watteartige, weiße Gebilde am Stamm, die sich bei starkem Befall auch an den Ästen bilden, zu erkennen. Der zu den Schlauchpilzen zählende Schwächeparasit an Platane ( Splanchnonema platani ) verursacht ein rasches Absterben von Ästen. Diese als Massaria bezeichnete Krankheit wurde in Deutschland erstmals 2003 nach einem heißen und besonders trockenen Sommer nachgewiesen. Auch größere Äste mit geringer Vitalität können befallen werden und rasch ganz oder teilweise abgetötet werden. Breite, leicht violett bis hellrötlich verfärbte Rindenbereiche der Astoberseite sind ein Zeichen des Befalls. Später färben dunkle Pilzsporen diese Partien fleckig-schwarz. Es folgt eine rasch voranschreitende Holzfäule im Gewebe der Astoberseite. Da die Astunterseite noch nicht befallen ist, bleibt der Ast weiterhin belaubt. Voll belaubte und dis dahin unauffällige, stärkere Äste können innerhalb einiger Wochen absterben und zu einer Gefahr werden. Die Weiße Mistel (Weißbeerige Mistel, Viscum album ) wächst als immergrüner Halbschmarotzer auf den Ästen bestimmter Wirtsbäume und kann im Laufe der Jahre Büsche von bis zu einem Meter Durchmesser bilden. Die Samen der Mistel werden durch Vögel verbreitet, für die sie einen wichtigen Teil der Winternahrung darstellen. Das Berliner Pflanzenschutzamt hat bei Untersuchungen im Raum Steglitz-Zehlendorf seit 1987 eine Zunahme des Auftretens der Laubholz-Mistel verzeichnet. Die vielfältigen Beeinträchtigungen am Straßenstandort schwächen die Bäume und machen sie anfällig für die Besiedlung mit Misteln. Misteln – Möglichkeiten zur Vitalisierung von Wirtsbäumen Weitere Informationen Pflanzenschutzamt Berlin: Überwachung von Schadorganismen im Berliner Stadtgebiet
| Origin | Count |
|---|---|
| Bund | 34 |
| Land | 14 |
| Wissenschaft | 3 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 28 |
| Repositorium | 1 |
| Taxon | 1 |
| Text | 7 |
| unbekannt | 11 |
| License | Count |
|---|---|
| geschlossen | 19 |
| offen | 30 |
| Language | Count |
|---|---|
| Deutsch | 42 |
| Englisch | 14 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Datei | 2 |
| Dokument | 11 |
| Keine | 21 |
| Webseite | 18 |
| Topic | Count |
|---|---|
| Boden | 32 |
| Lebewesen und Lebensräume | 48 |
| Luft | 24 |
| Mensch und Umwelt | 48 |
| Wasser | 21 |
| Weitere | 49 |