Das Projekt B1 'Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen' ist Teil des Sonderforschungsbereiches 607 Wachstum und Parasitenabwehr und befindet sich bereits in der vierten Phase des seit 1998 laufenden Forschungsprojektes. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.
The aim of the current research is to identify regional sources and trans-boundary flow leading to the observed salinity of Lake Tiberias (LT) -also known as the Sea of Galilee or Lake Kinneret-, and its surroundings, which is considered the only natural surface fresh water reservoir of the area. The current study will include all sources of brines in the Tiberias Basin (TB) with specific emphasis of the relationship between the brines from the Ha'on and Tiberias Regions (HTR).The tasks will be achieved by a multidisciplinary approach involving: (i) numerical modelling of density-driven flow processes (i.e., coupled heat and dissolution of evaporites), (ii) hydrochemical studies, supplemented by investigations of subsurface structures.(i) Numerical modelling will be carried out by applying the commercial software FEFLOW® (WASY, GmbH) complemented with the open source code OpenGeoSys developed at the UFZ of Leipzig (Wang et al., 2009). The final goal is to build a 3D regional-scale model of density-driven flow that will result in: (1) revealing the different interactions between fresh groundwater and natural salinity sources (2) elucidate the driving mechanisms of natural brines and brackish water body's movements.(ii) Hydrochemical study will include major, minor and, if possible, rare earth elements (REE) as well as isotope studies. The samples will be analysed at the FU Berlin and UFZ Halle laboratories. Geochemical data interpretation and inverse modelling will be supported by PHREEQC. Hydrochemical field investigations will be carried out in Tiberias basin and its enclosing heights, i.e. the Golan, Eastern Galilee and northern Ajloun in order to search for indications of the presence of deep, relic saline groundwater infested by the inferred Ha'on mother-brine. The current approaches will be supplemented by seismic and statistical data analysis as well as GIS software applications for the definition of the subsurface structures. The key research challenges are: building a 3D structural model of selected regions of TB, adapting both structural and hydrochemical data to the numerical requirements of the model; calibrating the 3D regional-scale model with observational data. The results of this work are expected to establish suitable water-management strategies for the exploitation of freshwater from the lake and from the adjacent aquifers while reducing salinization processes induced by both local and regional brines.
GLORIA combines a Michelson interferometer with a detector array of 128 x 128 pixels and will be the first 2D infrared limb imaging spectrometer worldwide. It is designed for HALO and will measure the distribution of temperature and a considerable number of trace constituents along with cloud mapping with unprecedented spatial resolution in the free troposphere and lower stratosphere. It is an essential contribution to the HALO demo missions TACTS, POLSTRACC, and CIRRUS-RS. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration / characterisation and for algorithm development. The work of the first proposal focused on characterisation and modeling of the instrument and on the development of methods and algorithms which are capable of generating calibrated spectra with high accuracy. Accurately calibrated spectra are a prerequisite for the retrieval of atmospheric parameters and the scientific data exploitation. Within this renewal proposal the developed characterisation methods will be applied to the instrument in flight configuration, and the new algorithms will be used to generate highly accurate calibrated spectra from the raw interferograms measured during the HALO demo missions. The work will be completed by a thorough error analysis for the calibrated spectra. Finally, instrument settings, calibration scenario and data processing shall be optimised with respect to data quality. This proposal contributes to the development of high technology sensors and instruments for the use on HALO.
Die Erkennung von Veränderungen der Landbedeckung der Erdoberfläche auf der Basis von satellitengestützten Fernerkundungsdaten ist seit Jahrzehnten ein sehr aktives Forschungsfeld. Das Ziel des Landschaftsveränderungsdiensts ist es, freie Copernicus-Satellitendaten für eine automatische Ableitung von Landbedeckungsänderungen zu nutzen und diese Informationen regelmäßig für einzelne Landschaftselemente (z.B. für Waldgebiete, Wasserflächen, Landwirtschaftsflächen usw.) über einen Web Service bereitzustellen. Copernicus Daten eignen sich aufgrund der hohen zeitlichen (ca. 3-5 Tage, je nach Sensor) und mittleren räumlichen Auflösung (ab 10m) ideal für eine regelmäßige bundesweite flächendeckende Analyse der Landbedeckung. Um eine hohe Bearbeitungsleistung zu erreichen wird die 'Copernicus Data and Exploitation Platform - Deutschland' (CODE-DE) für die Datenverarbeitung und -analyse genutzt. Es können aktuelle und konsistenteste Informationen über Landdeckungsänderungen abgeleitet werden, um kontinuierlich Geodaten in einer einheitlichen Qualität zu pflegen (siehe Abbildung 1). Andererseits können die gewonnenen Informationen genutzt werden, um statistisch relevante Geoinformationen zur quantitativen Beschreibung der UN-SDG-Indikatoren zu extrahieren. Die 2015 verabschiedete Agenda 2030 mit 17 Entwicklungszielen (SDG) und 169 Unterzielen verknüpft das Prinzip der Nachhaltigkeit mit der ökonomischen, ökologischen und sozialen Entwicklung. Die Umsetzung erfordert einen soliden Überprüfungsmechanismus. Dieser soll durch eine regemäßige nationale Erfassung von ca. 200 definierten UN-SDG-Indikatoren erfolgen, mit dem Ziel Fortschritte zu monitoren und die Politik zu informieren.
This project aims at investigating a scientific and societal pressing subject which requires urgent attention: the geo-hazards associated with the imminent use of the Arctic Ocean under the changing conditions forced by Global Change. Due to the increasing temperatures, the Arctic region is experiencing a decline of glaciers and sea-ice. Sea-ice reduction will soon expose to exploration yet unknown seafloor and sub-seafloor geology. Given todays interest in natural resources exploitation, the Arctic regions will experience an increase in seafloor and sub-seafloor use and an accelerated development of infrastructures, especially in coastal and continental margin areas. The glacial environment of the Arctic land masses causes that physical processes along continental margins differ substantially from those at lower latitudes, where continental slopes are built with river-fed sediments and glacial influence is comparatively unimportant. Continental margins at lower latitudes are better studied because industrialized nations have previously focused their activities there. The response of the Arctic seafloor and sub-seafloor system to upcoming changes in physical oceanography and glacial conditions, and the resultant sedimentary processes are yet not understood. To evaluate the future response of the Arctic geological system to Global Change is necessary to further understand the interplay among past climate change, continental margin geology, and submarine slope stability. This project aims at filling that critical gap in understanding. The overarching goal of this project is to evaluate how the increase of temperature, within the bounds of current predictions, may change the behavior of the Arctic geological system and alter slope stability. To achieve the goal we will estimate the volume and rate of gas release into the atmosphere that might affect climate, and evaluate the potential feed back of climate change to gas-hydrate dissociation. We will analyze potential future scenarios of slope in-stability in the context of the combined effect of the removal of past ice loading, ongoing temperature change, and stability of the geological elements of the continental margin system.
PROMISE strives for multidimensional networking thus fostering integration. The primary strategic objective of PROMISE is to improve and increase the integration, collaboration and knowledge transfer between the new member states, old member states (EU15) and candidate countries through a collaborative workplan of exchange of expertise and regional training and dissemination actions, to tackle common food safety threats. PROMISE strives for sustainability through involvement of risk communicators. A further strategic objective is to integrate stakeholders like public health authorities and national food safety authorities from the old and new member countries in order to ensure the exploitation of research results into standardisation and harmonisation efforts. PROMISE will enhance the knowledge on pathogen transmission. While legal imports are well monitored for contamination and alerts are registered through the Rapid Alert System for Food and Feed RASFF notification systems, gates into the EU-27 could exist where food supply chains are not controllled. These uncontrolled imports present the risk that new strains of traditional pathogens will be transferred from third countries into the European Union. Analysing, assessing and interpreting this risk of introducing new strains of pathogens is one of the main objectives of PROMISE.
MAGICPAH aims to explore, understand and exploit the catalytic activities of microbial communities involved in the degradation of persistent PAHs. It will integrate (meta-) genomic studies with in-situ activity assessment based on stable isotope probing particularly in complex matrices of different terrestrial and marine environments. PAH degradation under various conditions of bioavailability will be assessed as to improve rational exploitation of the catalytic properties of bacteria for the treatment and prevention of PAH pollution. We will generate a knowledge base not only on the microbial catabolome for biodegradation of PAHs in various impacted environmental settings based on genome gazing, retrieval and characterization of specific enzymes but also on systems related bioavailability of contaminant mixtures. MAGICPAH takes into account the tremendous undiscovered metagenomic resources by the direct retrieval from genome/metagenome libraries and consequent characterization of enzymes through activity screens. These screens will include a highend functional small-molecule fluorescence screening platform and will allow us to directly access novel metabolic reactions followed by their rational exploitation for biocatalysis and the re-construction of biodegradation networks. Results from (meta-) genomic approaches will be correlated with microbial in situ activity assessments, specifically dedicated to identifying key players and key reactions involved in anaerobic PAH metabolism. Key processes for PAH metabolism particularly in marine and composting environments and the kinetics of MAGICPAH aims to explore, understand and exploit the catalytic activities of microbial communities involved in the degradation of persistent PAHs. It will integrate (meta-) genomic studies with in-situ activity assessment based on stable isotope probing particularly in complex matrices of different terrestrial and marine environments. PAH degradation under various conditions of bioavailability will be assessed as to improve rational exploitation of the catalytic properties of bacteria for the treatment and prevention of PAH pollution. We will generate a knowledge base not only on the microbial catabolome for biodegradation of PAHs in various impacted environmental settings based on genome gazing, retrieval and characterization of specific enzymes but also on systems related bioavailability of contaminant mixtures. MAGICPAH takes into account the tremendous undiscovered metagenomic resources by the direct retrieval from genome/metagenome libraries and consequent characterization of enzymes through activity screens. These screens will include a high-end functional small-molecule fluorescence screening platform and will allow us to directly access novel metabolic reactions followed by their rational exploitation for biocatalysis and the re-construction of biodegradation networks. Results from (meta-) genomic approaches will be correlated with microbial in situ activity
In spite of a variety of efforts, tropical forests are still threatened by exploitation and conversion to agricultural land-use. Besides legal protection, sustainable management concepts are essential for stable conservation of these ecosystems. This project aims at identifying and optimizing the potentials for forest management for three different ecosystems (Dry Forest, Tropical Mountain Rain Forest, Paramo) along a height- and climate gradient in Southern Ecuador. Therefore, multiple and locally differentiated aspects of forest management have to be considered: the direct provision of goods (timber and non-timber forest products) as well as ecosystem services (carbon sequestration, water regulation), which are of increasing importance; moreover, the effects of forest management on biodiversity and the impacts of climate change on resilience indicators and the potential distribution of selected species with high potential for sustainable management or conservation should be investigated. First of all, the most important forest structure types and possible improvements of management alternatives have to be identified at the three sites for the assessment of different management concepts. The alternatives will be tested on experimental field plots and consequently monitored for their impacts on the locally most important criteria of forest management. A sound decision support tool will be developed, taking into account uncertainties with regard to input parameters and the relevance of different criteria of forest management. Therefore, Multi Criteria Decision Analysis will be used to generate locally adapted management concepts for the different ecosystems. Those concepts should be able to consider the multiple functions of forest management and will represent the forestry component in sustainable land-use models. The comprehensive studies will be carried out in close cooperation with other scientific teams from Germany and Ecuador as well as local institutions of relevance for forest management. The direct involvement of Ecuadorian students and young academics and the integration of the investigations in educational concepts will contribute to capacity building and local efforts for the enhancement of environmental competencies. Moreover, the experimental field plots will serve in parts as demonstration objects for the implementation of sustainable forest management concepts.
Objective: This collaborative research project will last 36 months and involve 10 partners. Its general aim is to contribute to the EU Renewed Sustainable Development Strategy through the enhancement of the links between policy and research on sustainable development in the field of sanitation (a crucial area with regard to environmental sustainability and quality of life in general). The project has two specific aims. - Generating new knowledge on the factors hindering the dissemination of scientific and technological knowledge that can be immediately applied in support to sustainable development, and of identifying knowledge brokerage methods enabling to overcome these hindering factors and to maximise the exploitation of relevant knowledge. - Starting up a learning process on knowledge brokerage in general as a tool for the socialisation of Scientific and Technological Research. The project components, to be implemented in the partner countries, are: - Research. Activities will carried out for mapping the knowledge and technological options for environmentally sustainable sanitation (ESS), and the actors that possess this knowledge. This, together with a consultation of experts aimed at listing the obstacles to knowledge brokerage dissemination, will provide the basis for experimentations. - Experimentation. Knowledge brokerage experiments on ESS will be carried out in the Netherlands, Italy and Bulgaria via 3 pilot projects. - Learning. The results achieved will serve to start up a process aimed at drafting policy guidelines (including a position paper) on knowledge brokerage on ESS. - Dissemination. Dissemination and awareness-raising initiatives will be carried out on the project issues and results. 9 WPs are foreseen. WP1 and 2 for the first part of the research; WP3-6 will be devoted to the design and implementation of 3 pilot projects, WP7 will be devoted to learning process; WP8 will deal with dissemination and WP9 with project management.
The aim of ESONET is to create an organisation capable of implementing, operating and maintaining a network of ocean observatories in deep waters around Europe from the Arctic Ocean to the Black Sea connected to shore with data and power links via fibre optic cables. The fundamental scientific objective is to make continuous real-time observations of environmental variables over decadal, annual, seasonal, diel and tidal time scales. Constant vigilance will allow resolution of quasi-instantaneous hazardous events such as slides, earthquakes, tsunamis and benthic storms. ESONET will form a sub sea segment of the GMES (Global Monitoring for Environment and Security) with sensors extending from the sub sea floor, through the water column to sub-surface sensors providing calibration of satellite borne sensors. ESONET brings together leading oceanographic and geosciences institutes in Europe together with universities, industry and regional agencies. It will provide integration across disciplines from geosciences, through physical, chemical and biological oceanography to technologies of instrumentation, cables, data processing and archiving. Jointly executed research will demonstrate functioning observatories at several cabled and non-cabled sites around Europe. Existing deep-sea cables installed for neutrino telescopes will be utilised in the Mediterranean sea and shallower tests sites will be established elsewhere. Principles of sensor management, calibration, metadata and data quality will be established with real-time dissemination and generation of hazard warning. ESONET will run a training and education program through courses, scholarships, exchange of personnel between participating institutes, and outreach to the general public. Dissemination will also include a web portal, with links to the INSPIRE Geo-Portal, and with all sub sea observatory projects worldwide, enabling the widest possible access to information. Prime Contractor: Institut Francais de Recherche pour l'Exploitation de la Mer; Issy-les-Moulineaux; France.
| Origin | Count |
|---|---|
| Bund | 43 |
| Type | Count |
|---|---|
| Förderprogramm | 43 |
| License | Count |
|---|---|
| offen | 43 |
| Language | Count |
|---|---|
| Deutsch | 3 |
| Englisch | 42 |
| Resource type | Count |
|---|---|
| Keine | 31 |
| Webseite | 12 |
| Topic | Count |
|---|---|
| Boden | 39 |
| Lebewesen und Lebensräume | 40 |
| Luft | 27 |
| Mensch und Umwelt | 43 |
| Wasser | 30 |
| Weitere | 43 |