Das Projekt B1 'Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen' ist Teil des Sonderforschungsbereiches 607 Wachstum und Parasitenabwehr und befindet sich bereits in der vierten Phase des seit 1998 laufenden Forschungsprojektes. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.
The aim of the current research is to identify regional sources and trans-boundary flow leading to the observed salinity of Lake Tiberias (LT) -also known as the Sea of Galilee or Lake Kinneret-, and its surroundings, which is considered the only natural surface fresh water reservoir of the area. The current study will include all sources of brines in the Tiberias Basin (TB) with specific emphasis of the relationship between the brines from the Ha'on and Tiberias Regions (HTR).The tasks will be achieved by a multidisciplinary approach involving: (i) numerical modelling of density-driven flow processes (i.e., coupled heat and dissolution of evaporites), (ii) hydrochemical studies, supplemented by investigations of subsurface structures.(i) Numerical modelling will be carried out by applying the commercial software FEFLOW® (WASY, GmbH) complemented with the open source code OpenGeoSys developed at the UFZ of Leipzig (Wang et al., 2009). The final goal is to build a 3D regional-scale model of density-driven flow that will result in: (1) revealing the different interactions between fresh groundwater and natural salinity sources (2) elucidate the driving mechanisms of natural brines and brackish water body's movements.(ii) Hydrochemical study will include major, minor and, if possible, rare earth elements (REE) as well as isotope studies. The samples will be analysed at the FU Berlin and UFZ Halle laboratories. Geochemical data interpretation and inverse modelling will be supported by PHREEQC. Hydrochemical field investigations will be carried out in Tiberias basin and its enclosing heights, i.e. the Golan, Eastern Galilee and northern Ajloun in order to search for indications of the presence of deep, relic saline groundwater infested by the inferred Ha'on mother-brine. The current approaches will be supplemented by seismic and statistical data analysis as well as GIS software applications for the definition of the subsurface structures. The key research challenges are: building a 3D structural model of selected regions of TB, adapting both structural and hydrochemical data to the numerical requirements of the model; calibrating the 3D regional-scale model with observational data. The results of this work are expected to establish suitable water-management strategies for the exploitation of freshwater from the lake and from the adjacent aquifers while reducing salinization processes induced by both local and regional brines.
Die Erkennung von Veränderungen der Landbedeckung der Erdoberfläche auf der Basis von satellitengestützten Fernerkundungsdaten ist seit Jahrzehnten ein sehr aktives Forschungsfeld. Das Ziel des Landschaftsveränderungsdiensts ist es, freie Copernicus-Satellitendaten für eine automatische Ableitung von Landbedeckungsänderungen zu nutzen und diese Informationen regelmäßig für einzelne Landschaftselemente (z.B. für Waldgebiete, Wasserflächen, Landwirtschaftsflächen usw.) über einen Web Service bereitzustellen. Copernicus Daten eignen sich aufgrund der hohen zeitlichen (ca. 3-5 Tage, je nach Sensor) und mittleren räumlichen Auflösung (ab 10m) ideal für eine regelmäßige bundesweite flächendeckende Analyse der Landbedeckung. Um eine hohe Bearbeitungsleistung zu erreichen wird die 'Copernicus Data and Exploitation Platform - Deutschland' (CODE-DE) für die Datenverarbeitung und -analyse genutzt. Es können aktuelle und konsistenteste Informationen über Landdeckungsänderungen abgeleitet werden, um kontinuierlich Geodaten in einer einheitlichen Qualität zu pflegen (siehe Abbildung 1). Andererseits können die gewonnenen Informationen genutzt werden, um statistisch relevante Geoinformationen zur quantitativen Beschreibung der UN-SDG-Indikatoren zu extrahieren. Die 2015 verabschiedete Agenda 2030 mit 17 Entwicklungszielen (SDG) und 169 Unterzielen verknüpft das Prinzip der Nachhaltigkeit mit der ökonomischen, ökologischen und sozialen Entwicklung. Die Umsetzung erfordert einen soliden Überprüfungsmechanismus. Dieser soll durch eine regemäßige nationale Erfassung von ca. 200 definierten UN-SDG-Indikatoren erfolgen, mit dem Ziel Fortschritte zu monitoren und die Politik zu informieren.
The dissection of complex traits into their underlying genetic components has become a major research area in plant breeding. As a consequence, significant progress has been made in the development of biometric methods for quantitative trait locus (QTL) analysis. Experimental studies on detection, mapping and unbiased estimation of QTL effects are generally performed on randomly derived progenies. For efficient integration of marker-assisted selection into classical breeding programs it seems indispensable to minimize expenditures by using selected populations for QTL detection. Thus, the development of new theoretical concepts for unbiased estimation of QTL effects in non-random populations is the focus of this study. Combining available QTL mapping methods, quantitative genetics, computer simulations, and analysis of experimental data, our goals are to develop biometric methods to apply QTL mapping and resampling techniques to non-random breeding populations such as Advanced-Backcross-populations (AB-QTL) or populations subjected to selection to obtain unbiased estimates of QTL effects and to allow full exploitation of the potential of marker-assisted selection. Our investigations will provide valuable analysis tools for optimizing marker-assisted selection programs. Furthermore, we aim to make recommendations on the integration of QTL analyses into practical breeding programs. Owing to the cooperative effort of research groups from Germany, Australia and the USA we expect that our results will be broadly distributed to the scientific community and practical plant breeding.
Quantitative precipitation forecasts will be evaluated by considering the spatial-temporal structure of water in all its three phases using new remote sensing observations. By studying the whole process chain from the water vapour distribution through cloud processes to the amount of precipitation reaching the ground, weaknesses in the treatment of cloud processes in weather forecasting models will be identified. Improvements in predictions should be achieved by improving the assumptions about cloud and precipitation microphysics (e.g. conversion rates, drop size distributions, particle phase and shape) as well as the sub-grid variability. Existing observational datasets will be used in both observation-to-model and model-to-observation approaches. The most important are: detailed observations of the vertical hydrometeor distribution available at observatories equipped with advanced ground-based remote sensors, three dimensional distributions of polarimetric radar parameters and simultaneous observations of the 3D wind field, and high spatial resolution water vapour fields, cloud parameters, and precipitation-relevant microwave radiances from satellite. The use of forward operators allows the full exploitation of the information content of the remote Sensors and is an important step towards future data assimilation methods. The focus of the proposed research is an short-term predictions by the Lokal-Modell of the German Weather Service, however, the created tools will be transferable to other models.
MAGICPAH aims to explore, understand and exploit the catalytic activities of microbial communities involved in the degradation of persistent PAHs. It will integrate (meta-) genomic studies with in-situ activity assessment based on stable isotope probing particularly in complex matrices of different terrestrial and marine environments. PAH degradation under various conditions of bioavailability will be assessed as to improve rational exploitation of the catalytic properties of bacteria for the treatment and prevention of PAH pollution. We will generate a knowledge base not only on the microbial catabolome for biodegradation of PAHs in various impacted environmental settings based on genome gazing, retrieval and characterization of specific enzymes but also on systems related bioavailability of contaminant mixtures. MAGICPAH takes into account the tremendous undiscovered metagenomic resources by the direct retrieval from genome/metagenome libraries and consequent characterization of enzymes through activity screens. These screens will include a highend functional small-molecule fluorescence screening platform and will allow us to directly access novel metabolic reactions followed by their rational exploitation for biocatalysis and the re-construction of biodegradation networks. Results from (meta-) genomic approaches will be correlated with microbial in situ activity assessments, specifically dedicated to identifying key players and key reactions involved in anaerobic PAH metabolism. Key processes for PAH metabolism particularly in marine and composting environments and the kinetics of MAGICPAH aims to explore, understand and exploit the catalytic activities of microbial communities involved in the degradation of persistent PAHs. It will integrate (meta-) genomic studies with in-situ activity assessment based on stable isotope probing particularly in complex matrices of different terrestrial and marine environments. PAH degradation under various conditions of bioavailability will be assessed as to improve rational exploitation of the catalytic properties of bacteria for the treatment and prevention of PAH pollution. We will generate a knowledge base not only on the microbial catabolome for biodegradation of PAHs in various impacted environmental settings based on genome gazing, retrieval and characterization of specific enzymes but also on systems related bioavailability of contaminant mixtures. MAGICPAH takes into account the tremendous undiscovered metagenomic resources by the direct retrieval from genome/metagenome libraries and consequent characterization of enzymes through activity screens. These screens will include a high-end functional small-molecule fluorescence screening platform and will allow us to directly access novel metabolic reactions followed by their rational exploitation for biocatalysis and the re-construction of biodegradation networks. Results from (meta-) genomic approaches will be correlated with microbial in situ activity
Toona ciliata (Australian red cedar) is highly valued for veneer and furniture production and endangered in its natural ecosystems due to exploitation. This work aims to improve the availability of this wood on the market and help reduce pressure on the species in its native environment. An afforestation project cultivating Toona ciliata was introduced to the study site in Misiones, Argentina. The local cultivation faces losses caused by drought and frost, because T. ciliata requires overstory protection when young. Consequently, Grevillea robusta, Pinus elliottii x Pinus caribaea, and Pinus taeda, nurse tree species which also produce sought-after wood were chosen to provide protection. One-year-old T. ciliata seedlings were planted underneath each of the six-year-old nurse species. An inventory after one year indicated that both survival and height increment were highest underneath G. robusta and lowest underneath P. elliottii x P. caribaea. In this study I am examining possible facilitation and competition mechanisms between the overstory and understory T. ciliata. Extensive empirical data collected over the course of 3 years will be utilized to project potential growth scenarios for several rotations using a computer based forest growth model.
The project examines funding of environmental technology development and commercialisation. The objectives are to: measure the performance of existing funding schemes (emphasising commercial-type funding); determine how environmental aspects are dealt with; identify obstacles; and suggest evolution of new schemes. Eight project work packages address these objectives, and also include development of environmental technology typologies, analysis of funding gaps, and comparison to Japan and the USA. The project supports SSP 5A by connecting policy and practice, linking researchers from across the EU, and using wide consultation to disseminate knowledge and maximise exploitation of research results. Consortium partners are drawn from five EU states, and have expertise and networks in private and public environmental technology funding and technology development processes. Stakeholder consultation with private and public funders, developers, academics, policy makers and NGOs will support research and knowledge dissemination. Consultation will include major public conferences and forums, sector-specific focus groups, and workshops to test analysis and geographic variations. Consultation and publication and dissemination of the final report will spur innovation by private and public funders, supporting knowledge exploitation after project completion. Research will emphasise private sector solutions, but will also include public-private partnerships, which are innovative measures that can assist in closing the funding gap. The varying applicability of such partnerships across different EU states will also be considered. The two project deliverables will be a database containing research and contact information, and a widely published final report that will integrate all research and recommendations. Prime Contractor: Partenaires Europeens pour l'Environnement; Bruxelles; Belgium.
The main objective of this research project is to use and further develop molecular tools to determine the genetic identity of polyploid and introgressed populations. The use of different complementary approaches on the same carefully sampled material will enable accurate a ppraisal of the usefulness of the different techniques in (i) genotyping polyploid individuals; (ii) revealing hybrid identity; and (iii) estimating the extent of introgression in natural populations, all of which are very important issues in conservation genetics. The molecular tools that will be included in this study are: 1) a selection of RAPDs and AFLPs (manual) (partner 01), 2) enzyme consensus primers (partner 01), 3) nuclear SSRs (partner 02), 4) cpDNA and mtDNA sequence analysis (partner 03), 5) cp SSRs (partner 04). In this project the Salix alba - Salix fragilis complex will be used first as a model to verify whether genetic analysis of the same samples with different techniques do indeed give consistent results concerning the extent of introgression. Full-sib progeny of controlled inter- and intraspecific crosses shall form the basis of molecular marker selections. Thereafter, carefully chosen populations, originating from particular stretches of European river margins, will be analysed (e.g. River Rhine, Rhône, Schelde, Po, Donau). The evaluation of the ability of these techniques in hybridization-related research will allow end-users such as breeders and foresters to apply this knowledge in their particular fields of interest. Opportunities for dissemination of results and exploitation by potential end-users will be maximized through close association with the Biotechnology for Biodiversity Platform (BBP).
GLORIA combines a Michelson interferometer with a detector array of 128 x 128 pixels and will be the first 2D infrared limb imaging spectrometer worldwide. It is designed for HALO and will measure the distribution of temperature and a considerable number of trace constituents along with cloud mapping with unprecedented spatial resolution in the free troposphere and lower stratosphere. It is an essential contribution to the HALO demo missions TACTS, POLSTRACC, and CIRRUS-RS. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration / characterisation and for algorithm development. The work of the first proposal focused on characterisation and modeling of the instrument and on the development of methods and algorithms which are capable of generating calibrated spectra with high accuracy. Accurately calibrated spectra are a prerequisite for the retrieval of atmospheric parameters and the scientific data exploitation. Within this renewal proposal the developed characterisation methods will be applied to the instrument in flight configuration, and the new algorithms will be used to generate highly accurate calibrated spectra from the raw interferograms measured during the HALO demo missions. The work will be completed by a thorough error analysis for the calibrated spectra. Finally, instrument settings, calibration scenario and data processing shall be optimised with respect to data quality. This proposal contributes to the development of high technology sensors and instruments for the use on HALO.
| Origin | Count |
|---|---|
| Bund | 54 |
| Type | Count |
|---|---|
| Förderprogramm | 54 |
| License | Count |
|---|---|
| offen | 54 |
| Language | Count |
|---|---|
| Deutsch | 3 |
| Englisch | 53 |
| Resource type | Count |
|---|---|
| Keine | 38 |
| Webseite | 16 |
| Topic | Count |
|---|---|
| Boden | 50 |
| Lebewesen und Lebensräume | 50 |
| Luft | 34 |
| Mensch und Umwelt | 54 |
| Wasser | 40 |
| Weitere | 54 |