Das Projekt B1 'Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen' ist Teil des Sonderforschungsbereiches 607 Wachstum und Parasitenabwehr und befindet sich bereits in der vierten Phase des seit 1998 laufenden Forschungsprojektes. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.
The aim of the current research is to identify regional sources and trans-boundary flow leading to the observed salinity of Lake Tiberias (LT) -also known as the Sea of Galilee or Lake Kinneret-, and its surroundings, which is considered the only natural surface fresh water reservoir of the area. The current study will include all sources of brines in the Tiberias Basin (TB) with specific emphasis of the relationship between the brines from the Ha'on and Tiberias Regions (HTR).The tasks will be achieved by a multidisciplinary approach involving: (i) numerical modelling of density-driven flow processes (i.e., coupled heat and dissolution of evaporites), (ii) hydrochemical studies, supplemented by investigations of subsurface structures.(i) Numerical modelling will be carried out by applying the commercial software FEFLOW® (WASY, GmbH) complemented with the open source code OpenGeoSys developed at the UFZ of Leipzig (Wang et al., 2009). The final goal is to build a 3D regional-scale model of density-driven flow that will result in: (1) revealing the different interactions between fresh groundwater and natural salinity sources (2) elucidate the driving mechanisms of natural brines and brackish water body's movements.(ii) Hydrochemical study will include major, minor and, if possible, rare earth elements (REE) as well as isotope studies. The samples will be analysed at the FU Berlin and UFZ Halle laboratories. Geochemical data interpretation and inverse modelling will be supported by PHREEQC. Hydrochemical field investigations will be carried out in Tiberias basin and its enclosing heights, i.e. the Golan, Eastern Galilee and northern Ajloun in order to search for indications of the presence of deep, relic saline groundwater infested by the inferred Ha'on mother-brine. The current approaches will be supplemented by seismic and statistical data analysis as well as GIS software applications for the definition of the subsurface structures. The key research challenges are: building a 3D structural model of selected regions of TB, adapting both structural and hydrochemical data to the numerical requirements of the model; calibrating the 3D regional-scale model with observational data. The results of this work are expected to establish suitable water-management strategies for the exploitation of freshwater from the lake and from the adjacent aquifers while reducing salinization processes induced by both local and regional brines.
Die Erkennung von Veränderungen der Landbedeckung der Erdoberfläche auf der Basis von satellitengestützten Fernerkundungsdaten ist seit Jahrzehnten ein sehr aktives Forschungsfeld. Das Ziel des Landschaftsveränderungsdiensts ist es, freie Copernicus-Satellitendaten für eine automatische Ableitung von Landbedeckungsänderungen zu nutzen und diese Informationen regelmäßig für einzelne Landschaftselemente (z.B. für Waldgebiete, Wasserflächen, Landwirtschaftsflächen usw.) über einen Web Service bereitzustellen. Copernicus Daten eignen sich aufgrund der hohen zeitlichen (ca. 3-5 Tage, je nach Sensor) und mittleren räumlichen Auflösung (ab 10m) ideal für eine regelmäßige bundesweite flächendeckende Analyse der Landbedeckung. Um eine hohe Bearbeitungsleistung zu erreichen wird die 'Copernicus Data and Exploitation Platform - Deutschland' (CODE-DE) für die Datenverarbeitung und -analyse genutzt. Es können aktuelle und konsistenteste Informationen über Landdeckungsänderungen abgeleitet werden, um kontinuierlich Geodaten in einer einheitlichen Qualität zu pflegen (siehe Abbildung 1). Andererseits können die gewonnenen Informationen genutzt werden, um statistisch relevante Geoinformationen zur quantitativen Beschreibung der UN-SDG-Indikatoren zu extrahieren. Die 2015 verabschiedete Agenda 2030 mit 17 Entwicklungszielen (SDG) und 169 Unterzielen verknüpft das Prinzip der Nachhaltigkeit mit der ökonomischen, ökologischen und sozialen Entwicklung. Die Umsetzung erfordert einen soliden Überprüfungsmechanismus. Dieser soll durch eine regemäßige nationale Erfassung von ca. 200 definierten UN-SDG-Indikatoren erfolgen, mit dem Ziel Fortschritte zu monitoren und die Politik zu informieren.
The European project initiative TRUST will produce knowledge and guidance to support TRansitions to Urban Water Services of Tomorrow, enabling communities to achieve sustainable, low-carbon water futures without compromising service quality. We deliver this ambition through close collaboration with problem owners in ten participating pilot city regions under changing and challenging conditions in Europe and Africa. Our work provides research driven innovations in governance, modelling concepts, technologies, decision support tools, and novel approaches to integrated water, energy, and infrastructure asset management. An extended understanding of the performance of contemporary urban water services will allow detailed exploration of transition pathways. Urban water cycle analysis will include use of an innovative systems metabolism model, derivation of key performance indicators, risk assessment, as well as broad stakeholder involvement and an analysis of public perceptions and governance modes. A number of emerging technologies in water supply, waste and storm water treatment and disposal, in water demand management and in the exploitation of alternative water sources will be analysed in terms of their cost-effectiveness, performance, safety and sustainability. Cross-cutting issues include innovations in urban asset management and water-energy nexus strengthening. The most promising interventions will be demonstrated and legitimised in the urban water systems of the ten participating pilot city regions. TRUST outcomes will be incorporated into planning guidelines and decision support tools, will be subject to life-cycle assessment, and be shaped by regulatory considerations as well as potential environmental, economic and social impacts. Outputs from the project will catalyse transformation change in both the form and management of urban water services and give utilities increased confidence to specify innovative solutions to a range of pressing challenges.
Fire is an important ecological factor of disturbance in African tropical ecosystems, driving vegetation dynamics and regulating nutrient cycling and biomass. The significance of wildfires for future environmental processes is underlined by recent projections of global warming, which predict more frequent and more intense extremes of natural events. Particularly in East Africa, where population growth and natural resource exploitation are among the highest in the world, strategies for sustainable economic development will have to deal with environmental changes at regional to continental scales. Understanding such complex responses to global change requires long-term records, since only they provide a way to observe the response of ecosystems to large-magnitude environmental change on decadal and longer time scales. We use high-resolution charcoal data from lake-sediment cores to reconstruct past fire/climate/human interactions in East Africa, aiming in particular 1) to understand how the fire regime influenced vegetation dynamics during the last millennia in savannah-type and sub-humid tropical ecosystems, 2) to test whether changes in fire regime are coupled with episodes of past climatic extremes inferred from the available sedimentological data, and 3) to detect early human deforestation and the timing of increased fire frequencies beyond its natural variability. Additionally, we will apply novel techniques such as molecular markers (benzene polycarboxylic acids, BPCAs) to complement the standard sedimentary approaches to reconstruct Holocene fire history. The proposed research addresses new, highly relevant questions for today's key issue of sustainability (economic development, natural resource management, adaptation of vulnerable communities to global change). Additionally, it will contribute with new high-quality data to ongoing multi-proxy research concerning the magnitude, frequency, and rates of past climate change in equatorial East Africa. Finally, the project will contribute to our understanding of tropical ecosystem functioning and its interaction with regional, cultural, and economic systems.
Root competition for water and nutrient among species is an ubiquitous feature of terrestrial plant communities influencing abundance and distribution of plants and the dynamics of their communities. The relationship between biodiversity and ecosystem functioning has emerged as a central issue in ecological and environmental sciences. It is commonly believed that increasing species richness increases the stability of communities. Higher plant species diversity might lead to increased exploitation of spatially heterogeneous resources by spatial niche complementarity. Tree species mixtures are generally believed to enhance ecosystem functioning in forests by niche partitioning and complementary resource exploitation due to differences in tree height, crown form, root depth and/ or phenology. In the past, however, most studies focused on the aboveground interaction and coexistence of the tree species, while factors controlling belowground species interactions remain less clear. There is experimental evidence to suggest that below-ground competition in herbaceous communities is size-symmetric in homogeneous soil. However, recent studies in tree communities indicate that fine-root competition may be asymmetric. The main purpose of this project is to characterize the underground niche separation and competition in relation to tree species diversity in mixtures comprising spruce, beech, oak and Douglas fir. Structural traits and spatial distribution of fine roots were investigated using a soil core method and fine-root growth is being assessed using the ingrowth core technique at a site in Kaltenborn, which is part of the long-term biodiversity-ecosystem functioning experiment with tree species of temperate forests (BIOTREE). The objectives of this study were to test the following hypotheses: (1) overall level of soil exploitation increases with the tree species diversity; (2) competitive ability belowground is size-symmetric, and (3) the below-ground competitive ability is species specific. As part of this investigation, we will explore the potential of using Near-infrared reflectance spectroscopy to identify the species identity of fine roots of the different tree species and to quantify the contribution of different fine roots in mixed root samples.
Aquifers are the main source of water in most semi-arid areas of the Mediterranean basin. As a result of over-exploitation hydrologic deficits of varying acuity prevail in these areas. Seawater intrusion and pollution have been identified as the primary factors for quality degradation. Further deterioration can be expected based on trends in the precipitation regime attributed to climate change. The objective of this project is to identify alternative sources of water and to investigate the feasibility, both environmental and economic of their utilization. Alternative water sources to be artificially recharged comprise: surface water runoff, treated effluent, and imported water. Furthermore, brackish water bodies, present in many aquifers could be utilised after desalination. The project structured into eight work-packages comprehensively addresses all issues related to the problem: expected precipitation rates, recharge and water budgets, identification of potential alternative water sources and technologies for their utilization, development of tools for the management of groundwater resources under artificial recharge conditions, aquifer vulnerability assessment, characterization of the unsaturated zone, and mixing effects. Four test sites have been selected for practical application of the approach. Substantial field testing, integration of technologies and findings to ensure optimal implementations of aquifer recharge alternatives, quantification of socio-economic impacts and development of dissemination platform are planned. Finally a carefully designed project management shall drive and accompany the project execution in order to ascertain consistency and efficiency.
Objective: The Project objective is the development of a low cost and high efficiency air-conditioning system based on CO2 (R744) as refrigerant fluid. Methods to assess performance, fuel annual consumption and environmental impact will be identified and they will constitute a first step for EU new standards. The EU, as Greenhouse Gas emission reduction measure, proposed the ban for Mobile Air Conditioning systems of fluids having a Global Warming Potential lower than 50 (i.e. R-134a and R-152a) with complementary measures - e.g. measurement of the MAC fuel consumption - This represents a challenge and an opportunity for OEMs and Mobile A/C Suppliers. The CO2 - R-744 when used as a refrigerant - is the favourite candidate to replace the R-134a. Besides safety, reliability and efficiency, the present estimated additional cost, ranging from 70 up to 150 Euro with reference to the low priced car systems, represents a obstacle. The lower priced vehicles constitute up the 70Prozent of the present EU car market, this number will rise up to the 80Prozent with the EU enlargement. A low cost and high efficiency R 744 MAC will support the EU efforts reducing the resistance to the approval of the HFC ban, allowing a rapid diffusion of the new system with the related environmental benefits and making the EU industries more competitive. The consortium composition - 2 major OEMs, 4 suppliers and three acknowledged excellence centres - makes the risk acceptable assuring an effective exploitation. Finally the Project gathers the most skilled European scientists and engineers in this specific field, so high level scientific and technical know how are expected to be produced as well as scientific advances in the dynamic system modelling. This will contribute to strengthen EU industries position in other domains (e.g. domestic air conditioning). The BCOOL project forms a cluster with the project named TOPMACS,focused on innovative adsorption mobile air conditioning systems...
GLORIA combines a Michelson interferometer with a detector array of 128 x 128 pixels and will be the first 2D infrared limb imaging spectrometer worldwide. It is designed for HALO and will measure the distribution of temperature and a considerable number of trace constituents along with cloud mapping with unprecedented spatial resolution in the free troposphere and lower stratosphere. It is an essential contribution to the HALO demo missions TACTS, POLSTRACC, and CIRRUS-RS. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration / characterisation and for algorithm development. The work of the first proposal focused on characterisation and modeling of the instrument and on the development of methods and algorithms which are capable of generating calibrated spectra with high accuracy. Accurately calibrated spectra are a prerequisite for the retrieval of atmospheric parameters and the scientific data exploitation. Within this renewal proposal the developed characterisation methods will be applied to the instrument in flight configuration, and the new algorithms will be used to generate highly accurate calibrated spectra from the raw interferograms measured during the HALO demo missions. The work will be completed by a thorough error analysis for the calibrated spectra. Finally, instrument settings, calibration scenario and data processing shall be optimised with respect to data quality. This proposal contributes to the development of high technology sensors and instruments for the use on HALO.
The research, development and demonstration activities planned for the ERG project focus on the solar energy supply chain, starting form solar cells and proceeding along with innovative energy extraction (harvesting) techniques, high efficiency power conversion and finally managing the energy distribution inside a smart grid, with the target of different classes of applications, from house to small area, as well as application specific 'local grid' (healthcare, automotive, etc). By considering the full solar energy supply chain, we expect to produce relevant improvements of the industrial state-of-the-art in the efficiency of solar cells, in the optimization of energy generated by photovoltaic systems, in the loss reduction of power converters and, finally, in energy management strategy. At the initial chain-link of the energy value chain, the project aims to design and develop a set of innovative solar cells. In particular we primarily target the development of ultra-thin (20 micron) Si wafer PV cells, Si hetero-junction cells (tandem/multi-junction and hetero-junction contacts), novel architectures (e.g., back-contact), novel materials (for Si hetero-junctions, ARC, and passivation dielectrics), novel approaches for screen printing and laser processing, with focus to the case of back-contact cells. As a promising low-cost alternative to Si, ERG will pursue the goal of totally printable dye-sensitized-solar-cells (DSSC). This will include (a) printable electrolyte (to replace liquid electrolyte), (b) advanced TiO2 electrode, and (c) counter electrode (to meet high performance DSSC applications). The overall objective is to demonstrate DSSC products for commercial applications. The next downward chain-link addressed by the project deals with optimization of the energy generated by photovoltaic systems by focusing on power management electronics for silicon cell panels and on micro electromechanical systems for Concentrated Photovoltaic cells (CPV). The complete supply chains will be considered for optimum energy exploitation by Maximum Power Point Tracking (MPPT) and power conversion on module / segment levels for PV and also CPV solar generators. The architecture study will elaborate different profiles of end-users, including direct grid connection, energy storage option and E-mobility support. As the final chain-link is concerned, the project will develop behavioural models for the individual components of the 'Smart Grid'. This allows the development of optimal energy dispatching and battery charging algorithms. These algorithms will obtain their input from sensors distributed over the network, with typically, but not exclusive, a wireless communication infrastructure. A full set of demonstrators, including innovative PV cells, novel conversion systems for PV and CPV inverters, and network demonstrators based on a household application and an industrial application will complete the project deliverables.
| Origin | Count |
|---|---|
| Bund | 51 |
| Type | Count |
|---|---|
| Förderprogramm | 51 |
| License | Count |
|---|---|
| offen | 51 |
| Language | Count |
|---|---|
| Deutsch | 3 |
| Englisch | 50 |
| Resource type | Count |
|---|---|
| Keine | 36 |
| Webseite | 15 |
| Topic | Count |
|---|---|
| Boden | 48 |
| Lebewesen und Lebensräume | 48 |
| Luft | 32 |
| Mensch und Umwelt | 51 |
| Wasser | 38 |
| Weitere | 51 |