Halogenradikale spielen eine Schlüsselrolle in der Chemie der polaren Grenzschicht. Alljährlich im Frühjahr beobachtet man riesige Flächen von mehreren Millionen Quadratkilometern mit stark erhöhten Konzentrationen von reaktivem Brom, welches von salzhaltigen Oberflächen in der Arktis und Antarktis emittiert werden. Dieses Phänomen ist auch als Bromexplosion bekannt. Des Weiteren detektieren sowohl boden- als auch satellitengestützte Messungen signifikante Mengen von Jodoxid über der Antarktis, jedoch nicht in der Arktis. Die Gründe für diese Asymmetrie sind nach wie vor unbekannt, aber das Vorhandensein von nur wenigen ppt reaktiven Jods in der antarktischen Grenzschicht sollte einen signifikanten Einfluss auf das chemische Gleichgewicht der Atmosphäre haben und zu einer Verstärkung des durch Brom katalysierten Ozonabbaus im polaren Frühjahr haben. Der Schwerpunkt der Aktivitäten im Rahmen von HALOPOLE III wird auf der Untersuchung von wichtigen Fragestellungen liegen, die im Rahmen der Vorgängerprojekte HALOPOLE I und II im Bezug auf die Quellen, Senken und Transformationsprozesse von reaktiven Halogenverbindungen in Polarregionen aufgetreten sind. Basierend sowohl auf der synergistischen Untersuchung der bislang gewonnen Daten aus Langzeit - und Feldmessungen sowie auf neuartigen Messungen in der Antarktis sind die wesentlichen Schwerpunkte: (1) Die Untersuchung einer im Rahmen von HALOPOLE II aufgetretenen eklatanten Diskrepanz zwischen aktiven und passiven Messungen DOAS Messungen von IO. (2) Eine eingehende Analyse der DOAS Langzeitmessungen von der Neumayer Station und Arrival Heights (Antarktis) sowie Alert (Kanada) bezüglich Meteorologie, Ursprung der Luftmassen, Vertikalverteilung, sowie des Einflusses von Schnee, Meereis und Eisblumen auf die Freisetzung von reaktiven Halogenverbindungen. (3) Die Untersuchung der kleinskaligen räumlicher und zeitlichen Variation von BrO auf der Basis einer detaillierten Analyse der flugzeuggebundenen MAX-DOAS Messungen während der BROMEX 2012 Kampagne in Barrow/Alaska. (4) Die Analyse der kürzlich in der marginalen Eiszone der Antarktis auf dem Forschungsschiff Polarstern durchgeführten Messungen im Hinblick auf die horizontale und vertikale Verteilung von BrO und IO, sowie den Einfluss der Halogenchemie auf den Ozon- und Quecksilberhaushalt. (5) Weitere detaillierte Untersuchungen des Einflusses von Halogenradikalen, insbesondere Chlor und Jod, auf das chemische Gleichgewicht der polaren Grenzschicht auf der Basis einer Messkampagne in Halley Bay, Antarktis. (6) Detailliertere Langzeit-Messungen von Halogenradikalen und weiteren Substanzen auf der Neumayer Station mittels eines neuen Langpfad-DOAS Instruments welches im Rahmen dieses Projektes entwickelt wird. Zusätzlich zu den bereits existierenden MAX-DOAS Messungen werden diese eine ganzjährige Messungen des vollen Tagesganges sowie die Untersuchung nicht nur der Brom- und Jodchemie, sondern auch der Chlorchemie ermöglichen.
Agriculture is the major contributor of nitrogen to ecosystems, both by organic and inorganic fertilizers. Percolation of nitrate to groundwater and further transport to surface waters is assumed to be one of the major pathways in the fate of this nitrogen. The quantification of groundwater and associated nitrate flux to streams is still challenging. In particular because we lack understanding of the spatial distribution and temporal variability of groundwater and associated NO3- fluxes. In this preliminary study we will focus on the identification and quantification of groundwater and associated nitrate fluxes by combining high resolution distributed fiber-optic temperature sensing (DTS) with in situ UV photometry (ProPS). DTS is a new technique that is capable to measure temperature over distances of km with a spatial resolution of ca1 m and an accuracy of 0.01 K. It has been applied successfully to identify and quantify sources of groundwater discharge to streams. ProPS is a submersible UV process photometer, which uses high precision spectral analyses to provide single substance concentrations, in our case NO3-, at minute intervals and a detection limit of less than 0.05 mg l-1 (ca.0.01 mg NO3--Nl-1). We will conduct field experiments using artificial point sources of lateral inflow to test DTS and ProPS based quantification approaches and estimate their uncertainty. The selected study area is the Schwingbach catchment in Hessen, Germany, which has a good monitoring infrastructure. Preliminary research on hydrological fluxes and field observations indicate that the catchment favors the intended study.
The present-day configuration of Indonesia and SE Asia is the results of a long history of tectonic movements, volcanisms and global eustatic sea-level changes. Not indifferent to these dynamics, fauna and flora have been evolving and dispersing following a complicate pattern of continent-sea changes to form what are today defined as Sundaland and Wallacea biogeographical regions. The modern intraannual climate of Indonesia is generally described as tropical, seasonally wet with seasonal reversals of prevailing low-level winds (Asian-Australian monsoon). However at the interannual scale a range of influences operating over varying time scales affect the local climate in respect of temporal and spatial distribution of rainfall. Vegetation generally reflects climate and to simplify it is possible to distinguish three main ecological elements in the flora of Malaysia: everwet tropical, seasonally dry tropical (monsoon) and montane. Within those major ecological groups, a wide range of specific local conditions caused a complex biogeography which has and still attract the attention of botanists and biogeographers worldwide. Being one of the richest regions in the Worlds in terms of species endemism and biodiversity, Indonesia has recently gone through intensive transformation of previously rural/natural lands for intensive agriculture (oil palm, rubber, cocoa plantations and rice fields). Climate change represents an additional stress. Projected climate changes in the region include strengthening of monsoon circulation and increase in the frequency and magnitude of extreme rainfall and drought events. The ecological consequences of these scenarios are hard to predict. Within the context of sustainable management of conservation areas and agro-landscapes, Holocene palaeoecological and palynological studies provide a valuable contribution by showing how the natural vegetation present at the location has changed as a consequence of climate variability in the long-term (e.g. the Mid-Holocene moisture maximum, the modern ENSO onset, Little Ice Age etc.). The final aim of my PhD research is to compare the Holocene history of Jambi province and Central Sulawesi. In particular: - Reconstructing past vegetation, plant diversity and climate dynamics in the two study areas Jambi (Sumatra) and Lore Lindu National Park (Sulawesi) - Comparing the ecological responses of lowland monsoon swampy rainforest (Sumatra) and everwet montane rainforests (Sulawesi) to environmental variability (vulnerability/resilience) - Investigating the history of human impact on the landscape (shifting cultivation, slash and burn, crop cultivation, rubber and palm oil plantation) - Assessing the impact and role of droughts (El Niño) and fires - Adding a historical perspective to the evaluation of current and future changes.
Das hier vorgeschlagene Projekt, RP6 in INUIT-2, zielt darauf hin, fundamentales Prozessverständnis in Bezug auf heterogene Eisnukleation zu erzielen, und hier besonders auf die Rolle von biogenen Eiskeimen und von Eiskeimen die aus Mischungen von biogenem und mineralischem Material bestehen. Der Leipzig Aerosol Cloud Interaction Simulator (LACIS) wird dazu verwendet werden, das Immersionsgefrierverhalten einer Reihe von verschiedenen Eiskeimen zu untersuchen, darunter biogene (von Pilzen stammende) Eiskeime, solche die aus einer Mischung von biogenem und mineralischem Material bestehen wie Bodenstäube und Proben die innerhalb von INUIT-2 als Test-Materialen verwendet werden. Letztere werden von verschiedenen Gruppen von innerhalb und außerhalb von INUIT vermessen werden, und die Ergebnisse werden Vergleichen unterzogen werden, ähnlich denen, die bereits für einfachere Test-Materialien in INUIT-1 erfolgreich durchgeführt worden sind. Für die Eiskeime, die zur Untersuchung in RP6 vorgeschlagen werden, wird in sinnvollen und machbaren Fallen eine Oberflächenbehandlung durchgeführt werden, mit reaktiven und mit chemisch inerten Substanzen, deren Einfluss auf die Eiskeimfähigkeit dann untersucht wird. Wie bereits in früheren LACISStudien dokumentiert, sind kontrollierte Oberflächenbehandlungen ein ausgezeichnetes Instrument um zu ermitteln, was dazu führt, dass ein Partikel ein effektiver Eiskeim ist. Zusätzlich erhellen diese Untersuchungen den Effekt der Alterung auf die Eiskeime. Es ist auch geplant, die Messungen auszuweiten, hin zu Bedingungen unter denen eine Untersättigung bezüglich Wasserdampf vorliegt. Es soll untersucht werden in wie weit sich die Eiskeimbildung unter diesen Bedingungen verhält wie es im Fall von Immersionsgefrieren in konzentrierten Lösungen zu erwarten wäre. Von all den experimentell erhaltenen Daten werden verschiedene Parametrisierungen abgeleitet, sowohl zeit-abhängige als auch zeit-unabhängige, die dann der Wissenschaftsgemeinschaft für die weitere Verwendung in Modellen zur Verfügung gestellt werden. Die hier vorgeschlagenen Studien werden die bereits erfolgreich an LACIS während INUIT-1 durchgeführten Arbeiten ergänzen, da die Arbeiten in INUIT-1 stärker auf die Untersuchung reiner Mineralstäube und reiner biogener Substanzen hinzielten. Die Untersuchung von komplexeren und entsprechend mehr atmosphärenrelevanten Eiskeimen wird signifikant dazu beisteuern, atmosphärische Eiskeimbildung generell besser zu verstehen, und die entsprechenden Beiträge von mineralischen und biogenen Substanzen zu quantifizieren.
Das Hauptziel des ComparCE Projekts ist eine umfassende Einschätzung verschiedener Climate Engineering (CE) Maßnahmen gegeneinander und gegenüber Mitigationsbemühungen. Dabei sollen insbesondere Modelunsicherheiten berücksichtigt werden, da eine solche Einschätzung im CE Fall ausschließlich auf Modellsimulationen beruht. In diesem Projekt wollen wir darüber hinaus Fragen beantworten, die unserer Meinung bislang im CE Zusammenhang nicht bearbeitet wurden. Als ersten und zentralen Schritt wollen wir untersuchen welche Metriken und Indikatoren für die Beurteilung von CE Methoden, und somit für das gesamte Schwerpunkt Programm, wichtig sind und wie diese sich von den Metriken im Kontext von Klimawandel unterscheiden. Diese Art der Forschung gab es im Kontext Klimawandel bereits, sie fehlt bislang aber für CE. Durch Austausch mit internationalen Forschergruppen wurde klar, dass eine die wahrscheinlichste Implementierung von CE Maßnahmen aus einer Kombination der verschiedenen Technologien besteht. Daher wollen wir in diesem Projekt untersuchen wie das Erdsystem auf eine Kombination verschiedener CE Maßnahmen reagiert, und ob es möglich ist die Signale der einzelnen Methoden jeweils zuzuordnen. In diesem Zusammenhang werden wir ebenfalls untersuchen ob und wie die Effektivität der CE Maßnahmen vom Hintergrund-Klimazustand abhängt und ob z.B. der Zeitpunkt der Umsetzung von CE eine Rolle spielt. Darüber hinaus wollen wir robuste, regionale CE Muster untersuchen um ebenfalls auf die regionalen Auswirkungen von CE eingehen zu können. Das ist besonders wichtig, weil für die lokale Öffentlichkeit regionale Klimaextreme mehr Bedeutung haben als globale Mittelwerte. Diese Analysen werden ebenfalls den Findungsprozess der Metriken informieren. Zusätzlich wird die plötzliche Terminierung von CE Maßnahmen im Kontext der Geschwindigkeit des Terminations-Schocks untersucht. Schlussendlich basiert die gesamte Beurteilung von CE Maßnahmen auf Modellergebnissen, daher finden wir, dass ein wichtiger Beitrag für die CE Debatte eine Beurteilung der model-internen Unsicherheiten ist. Diese werden mit Anhang von Änderungen der Wahrscheinlichkeitsverteilung von Metriken quantifiziert, so können zum Beispiel aussagen über die Wahrscheinlichkeit einer Richtwert-Überschreitung der gegebenen Zukunftsszenarien getroffen werden. Die Ergebnisse diese Projekts erlauben eine umfassende Einschätzung der untersuchten CE Maßnahmen gegenüber Migration, unter Berücksichtigung von Unsicherheiten in Modellen, den Zukunftsszenarien und Metriken, welche im Laufe des Projekts iterative mit anderen Teilprojekten diskutiert werden.
Introduction: In Malaysia, excessive nutrients from livestock waste management systems are currently released to the environment. Particularly, large amounts of manure from intensive pig production areas are being excreted daily and are not being fully utilised. Alternatively, the excess manure can be applied as an organic fertiliser source in neighbouring cropping systems on the small landholdings of the pig farms to improve soil fertility so that its nutrients will be available for crop uptake instead of being discharged into water streams. Thus, there is a need for better tools to analyse the present situation, to evaluate and monitor alternative livestock production systems and manure management scenarios, and to support farmers in the proper management of manure and fertiliser application. Such tools are essential to quantify, and assess nutrient fluxes, manure quality and content, manure storage and application rate to the land as well as its environmental effects. Several computer models of animal waste management systems to assist producers and authorities are now available. However, it is felt that more development is needed to adopt such models to the humid tropics and conditions of Malaysia and other developing countries in the region. Objectives: The aim is to develop a novel model to evaluate nutrient emission scenarios and the impact of livestock waste at the landscape or regional level in humid tropics. The study will link and improve existing models to evaluate emission of N to the atmosphere, and leaching of nutrients to groundwater and surface water. The simulation outputs of the models will be integrated with a GIS spatial analysis to model the distribution of nutrient emission, leaching and appropriate manure application on neighbouring crop lands and as an information and decision support tool for the relevant users.
Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.
The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.
Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
The decomposition of terrestrial organic material such as leaf litter represents a fundamental ecosystem function in streams that delivers energy for local and downstream food webs. Although agriculture dominates most regions in Europe and fungicides are applied widely, effects of currently used fungicides on the aquatic decomposer community and consequently the leaf decomposition rate are largely unknown. Also potential compensation of such hypothesised adverse effects due to nutrients or higher average water temperatures associated with climate change are not considered. Moreover, climate change is predicted to alter the community of aquatic decomposers and an open question is, whether this alteration impacts the leaf decomposition rate. The current projects follows a tripartite design to answer these research questions. Firstly, a field study in a vine growing region where fungicides are applied in large amounts will be conducted to whether there is a dose-response relationship between the exposure to fungicides and the leaf decomposition rate. Secondly, experiments in artificial streams with field communities will be carried out to assess potential compensatory mechanisms of nutrients and temperature for effects of fungicides. Thirdly, field experiments with communities exhibiting a gradient of taxa sensitive to climate change will be used to investigate potential climate-related effects on the leaf decomposition rate.
| Origin | Count |
|---|---|
| Bund | 294 |
| Type | Count |
|---|---|
| Förderprogramm | 294 |
| License | Count |
|---|---|
| offen | 294 |
| Language | Count |
|---|---|
| Deutsch | 76 |
| Englisch | 283 |
| Resource type | Count |
|---|---|
| Keine | 216 |
| Webseite | 78 |
| Topic | Count |
|---|---|
| Boden | 260 |
| Lebewesen und Lebensräume | 282 |
| Luft | 229 |
| Mensch und Umwelt | 294 |
| Wasser | 227 |
| Weitere | 294 |