We consider clay minerals, iron oxides and charcoal as major components controlling the formation of interfaces relevant for sorption of organic chemicals, as they control the assemblage of organic matter and mineral particles. We studied the formation of interfaces in batch incubation experiments with inoculated artificial soils consisting of model compounds (clay minerals, iron oxide, char) and natural soil samples. Results show a relevant contribution of both iron oxides and clay minerals to the formation of organic matter as sorptive interfaces for hydrophobic compounds. Thus, we intend to focus our work in the second phase on the characterization of the interface as formed by organic matter associated with clay minerals and iron oxides. The interfaces will be characterized by the BET-N2 and ethylene glycol monoethyl ether (EGME) methods and 129Xe and 13C NMR spectroscopy for determination of specific surface area, sorptive domains in the organic matter and microporosity. A major step forward is expected by the analysis of the composition of the interface at different resolution by reflected-light microscopy (mm scale), SEM (scanning electron microscopy, micrometer scale) and secondary ion mass spectrometry at the nanometer scale (nanoSIMS). The outcomes obtained in combination with findings from cooperation partners will help to unravel the contribution of different types of soil components on the formation and characteristics of the biogeochemical interfaces and their effect on organic chemical sorption.
Terrestrial green algae and cyanobacteria are typical and abundant components of biological soil crusts in the Polar Regions. These communities form water-stable aggregates that have important ecological roles in primary production, nitrogen fixation, nutrient cycling, water retention and stabilization of soils. Although available data on green algae and cyanobacteria are generally very limited for the Arctic and Antarctica, their functional importance as ecosystem developers in nutrient poor environments is regarded as high. Therefore, the main goal of the interdisciplinary project is, for the first time, a precise evaluation of their 1.) Biodiversity as well as of 2.) The infra-specific genetic diversity, 3.) ecophysiological performance and 4.) transcriptomics of the most abundant taxa in biological soil crusts isolated from the Antarctic Peninsula and Arctic Svalbard. Biodiversity will be investigated using a classical culture approach in combination with molecular-taxonomical methods as well as with metagenomics. The infra-specific genetic diversity of the most abundant green algae and cyanobacteria will be studied using fingerprinting techniques, and a range of selected populations characterized in relation to their physiological plasticity. Temperature and water availability, two key environmental factors for terrestrial organisms, are currently changing in Polar Regions due to global warming, and hence their effect on growth and photosynthesis response patterns will be comparatively investigated. The data will indicate whether and how global change influence population structure and ecological performance of key organisms in polar soil crusts, and help to make predictions on the future significance of the ecological functions of these pioneer communities. Such a multiphasic approach has never been applied before to soil algae and cyanobacteria in both Polar Regions, and hence represents one of the key innovations of this proposal.
Forests play a relevant role in mitigation of climate change. A major issue, however, is the scientifically well founded, transparent and verifyable monitoring of achievements in forest carbon sequestration through reduction of deforestation and forest degradation, and through fostering sustainable forest management. Monitoring is particularly difficult in diverse and inaccessible humid tropical forest areas. The proposed research will contribute to the improvement of forest carbon monitoring under the challenging conditions of humid tropical forests. Sample based field observations and model based biomass predictions will be linked to area-wide satellite remote sensing imagery (RapidEye) and to strip samples of LiDAR imagery. Techniques of linking these data sources will be further developed and analysed with respect to (1) precision of carbon estimation and (2) accuracy of carbon regionalization. The proposed project implies research on methodological improvements of both sample based forest inventories (resampling techniques for biomass, imputation of non-response) and remote sensing application to forest monitoring (regionalization, sample based application of LiDAR data). At the core of this research is the analysis of the error variance components that each data source brings into the system. Such error analysis will allow identifying optimal resource allocation for the efficient improvement of forest carbon monitoring systems.
We will compare the role of an RNA-binding protein in floral transition in Arabidopsis thaliana and Hordeum vulgare. The RNA-binding protein AtGRP7 promotes floral transition mainly by downregulating the floral repressor FLC via the autonomous pathway. Based on our observation that AtGRP7 affects the steady-state abundance of a suite of microRNA precursors, we will globally compare the small RNA component of the transcriptome during FTi regulation in wild type plants and AtGRP7 overexpressors by deep sequencing. This will extend the knowledge on small RNAs associated with floral transition and provide insights into the regulatory network downstream of this RNA-binding protein. Further, we will address the question how AtGRP7 orthologues function in crop species lacking FLC homologues. A barley line with highly elevated levels of the AtGRP7 orthologue HvGR-RBP1 shows accelerated FTi and preanthesis development when compared to a near-isogenic parent with very low expression of this gene. We will characterize in detail flowering of this line with respect to different photoperiods and its vernalization requirement. We will employ a TILLING approach to further delineate the function of HvGR-RBP1 in flowering. A candidate gene approach to identify downstream targets will provide insights into the signaling pathways through which HvGR-RBP1 influences FTi. This project contributes to the development of a functional cross-species network of FTi regulators, the major strategic aim of the SPP.
Due to the often practised uncontrolled disposal into the environment, olive oil production wastewater (OPWW) is presently a serious environmental problem in Palestine and Israel. The objectives of this interdisciplinary trilateral research project are (i) to understand the mechanisms of influence of the olive oil production wastewater on soil wettability, water storage, interaction with organic agrochemicals and pollutants; (ii) monitor short-term and long-term effects of OPWW land application in model laboratory and field experiments; (iii) identify the components responsible for unwanted changes in soil properties and (iv) analyse the mechanisms of association of OPWW OM with soil, the interplay between climatic conditions, pH, presence of multivalent cations and the resulting effects of land application. Laboratory incubation experiments, field experiments and new experiments to study heat-induced water repellency will be conducted to identify responsible OPWW compounds and mechanisms of interaction. Samples from field experiments and laboratory experiments are investigated using 3D excitation-emission fluorescence spectroscopy, thermogravimetry-differential thermal analysis-mass spectrometry (TGA-DSC-MS), LC-MS and GC-MS analyses. We will combine thermal decomposition profiles from OPWW and OPWW-treated soils in dependence of the incubation status using TGA-DSC-MS, contact angle measurements, sorption isotherms and the newly developed time dependent sessile drop method (TISED). The resulting process understanding will open a perspective for OPWW wastewater reuse in small-scale and family-scale olive oil production busi-nesses in the Mediterranean area and will further help to comprehend the until now not fully un-ravelled effects of wastewater irrigation on soil water repellency.
We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.
Bestandteile in Ensembles. Unterschutzstellung als Teil von Mehrheiten unbeweglicher Sachen, die aufgrund eines übergeordneten Bezugs Kulturdenkmäler sind, ohne dass jeder einzelne Bestandteil die Voraussetzungen des Satzes 1 erfüllen muss (Ensembles), wie Orts-, und Platzgefüge, Siedlungen oder Straßenzüge (§ 2 Absatz 2 Nr. 2 DSchG).
Ziel: The objective of our project is to investigate the impact of different natural and anthropogenic environmental and climatic parameters (CO2, ozone, UV-B, drought, nanoparticles, soil and airborne pollutants) on the potentiality for increases of allergenic components in Ragweed pollen. Methode: Acquisition of the complete transcriptome/proteome under constant and the different climatic parameters listed above will be carried out. In addition secondary metabolite analyses and electron microscopy will be performed. In addition secondary metabolite analyses and electron microscopy will be performed.
Ziel des Projektes ist eine Bestandsaufnahme der Wassermassenverteilung und der Zirkulation im Arktischen Ozean. Stabile Sauerstoffisotopen (delta18O) des Wassers ist ein konservativer Tracer und werden zusammen mit hydrochemischen Daten dazu verwendet das vom Schelf stammende Süßwasser (Flusswasser und Meereis-Schmelze oder Bildung) und die aus dem Pazifik stammende Komponente zu untersuchen. Auf diese Weise wird der Einfluss dieser Wassermassen in der arktischen Salzgehaltsschichtung (Halokline), dem Atlantischen Zwischenwasser und dem Tiefen- und Bodenwasser des Arktischen Ozeans quantifiziert werden. Es ist bekannt, dass die Verteilung der Pazifischen Komponente starken Veränderungen auf dekadischen Zeitskalen unterliegt aber auch in den Süßwasserverteilungen im Transpolaren Drift Strom wurden 2007 starke Variationen beobachtet welche somit auf zusätzliche jährliche Variationen hinweisen. Es ist nicht bekannt ob die 2007 beobachteten Variationen ein permanentes Phänomen sind und ob diese mit dem weitgehenden Fehlen des Pazifischen Wassers in diesem Zeitraum zusammenhängen. Die geplante flächendeckende und quantitative Erfassung der Süßwasserverteilung und des Pazifischen Wassers werden daher dazu beitragen, den Einfluss und die möglichen Rückkopplungsmechanismen der arktischen Hydrographie auf den arktischen und globalen Klimawandel weitergehend zu verstehen.
Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).