API src

Found 298 results.

Similar terms

s/bmc/RMC/gi

Rohstoffproduktivität

<p>Die Rohstoffproduktivität stieg zwischen 1994 und 2020 um rund 74 Prozent. Ziel des „Deutschen Ressourceneffizienzprogramms“ (ProgRess) war eine Verdopplung. Dieses Ziel wurde verfehlt. Seit der Veröffentlichung von ProgRess III im Jahr 2020 wird die „Gesamtrohstoffproduktivität“ abgebildet. Dieser weiterentwickelte Indikator ist Teil der Nationalen Kreislaufwirtschaftsstrategie (NKWS) von 2024.</p><p>Entwicklung der Rohstoffproduktivität</p><p>Die Rohstoffproduktivität in Deutschland stieg laut Daten des Statistischen Bundesamtes von 1994 bis 2020 um 73,6 %. Der abiotische Direkte Materialeinsatz sank in diesem Zeitraum um 21,6 %. Das Bruttoinlandsprodukt (BIP) stieg im selben Zeitraum um 36,0 % (siehe Abb. „Rohstoffproduktivität“). Das Jahr 2020 war allerdings durch die Lockdowns der Corona-Pandemie und damit verbundener geringerer wirtschaftlicher Aktivität und Nachfrage nach Rohstoffen geprägt.</p><p>Die Rohstoffproduktivität stieg in diesem Zeitraum nicht stetig. Drei Beispiele:</p><p>Insgesamt entwickelte sich die Rohstoffproduktivität in die angestrebte Richtung. Allerdings wurde seit dem Jahr 1994 das ursprünglich gesetzte Ziel des Deutschen Ressourceneffizienzprogramms (<a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">ProgRess</a>) nicht realisiert: eine Verdopplung der Rohstoffproduktivität bis 2020.&nbsp;</p><p>Indikator "Rohstoffproduktivität"</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ „Rohstoffproduktivität“ drückt aus, wie effizient abiotische Primärmaterialien in Deutschland eingesetzt wurden, um das Bruttoinlandsprodukt (BIP) zu erwirtschaften. Die Bundesregierung hat mit dem Deutschen Ressourceneffizienzprogramm ursprünglich das Ziel vorgegeben, die Rohstoffproduktivität bis zum Jahr 2020 im Vergleich zum Jahr 1994 zu verdoppeln. Mit der Verabschiedung des dritten Deutschen Ressourceneffizienzprogramms im Jahre 2020 wurde der Indikator durch die „Gesamtrohstoffproduktivität“ als zentraler Indikator weiterentwickelt (s. unten). Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ ist auch in der 2024 veröffentlichten <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> neben weiteren Indikatoren und Zielen verankert.</p><p>Um die Rohstoffproduktivität zu ermitteln, wird ein Quotient gebildet (siehe Schaubild „Stoffstromindikatoren“): Das Bruttoinlandsprodukt (BIP) wird mit den in Deutschland eingesetzten abiotischen Materialien in Beziehung gesetzt. Die abiotischen Materialien umfassen inländische Rohstoffentnahmen und importierte Materialien (abiotischer Direkter Materialeinsatz, siehe auch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>⁠ im Schaubild „Stoffstromindikatoren“). Die Rohstoffproduktivität erlaubt eine erste Trendaussage zur Effizienz der Rohstoffnutzung in unserer Wirtschaft über einen langen Zeitraum.</p><p>Die Basis des Indikators „Rohstoffproduktivität“: der abiotische Direkte Materialeinsatz</p><p>Zur Berechnung der Rohstoffproduktivität wird der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ „abiotischer Direkter Materialeinsatz“ verwendet. Der zugrundeliegende Indikator „Direkter Materialeinsatz“ wird im Englischen als „Direct Material Input“ (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>⁠) bezeichnet.</p><p>Der abiotische Direkte Materialeinsatz ermöglicht es, Umfang und Charakteristik der nicht-erneuerbaren Materialnutzung in einer Volkswirtschaft aus der Perspektive der Produktion darzustellen. Er berücksichtigt inländische Entnahmen von nicht-erneuerbaren Primärrohstoffen aus der Natur. Weiterhin sind alle eingeführten abiotischen Rohstoffe, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a>⁠ und Fertigwaren mit ihrem Eigengewicht Bestandteil des Indikators.<br><br>Der Direkte Materialeinsatz ist zentraler Bestandteil volkswirtschaftlicher Materialflussrechnungen.</p><p>Entwicklung des abiotischen Direkten Materialeinsatzes</p><p>Für die Deutung der Rohstoffproduktivität und deren Verlauf ist die Entwicklung des abiotischen Direkten Materialeinsatzes wichtig. Im Jahr der Wirtschaftskrise 2009 nutzte die deutsche Wirtschaft 1.203 Millionen Tonnen (Mio. t) nicht-erneuerbarer Materialien. Das waren knapp 21 % weniger als im Jahr 1994.</p><p>Im Jahr 2011 stieg der abiotische Direkte Materialeinsatz vorübergehend recht stark auf 1.322 Mio. t an. Dies war vor allem auf eine konjunkturbedingte Steigerung der inländischen Entnahme von mineralischen Baurohstoffen und weiter steigende Importe von Energieträgern und Metallerzeugnissen zurückzuführen. 2020 sank der Materialeinsatz wieder auf 1.187 Mio. t. Damit beträgt das Minus im Jahr 2020 gegenüber 1994 knapp 24 %. Letzte Zahlen des Statistischen Bundesamtes zeigen, dass der direkte abiotische Materialeinsatz bis 2022 mit 1.149 Mio. t. weiter leicht gesunken ist (siehe Abb. „Entwicklung des abiotischen Direkten Materialeinsatzes“).</p><p>Komponenten des abiotischen Direkten Materialeinsatzes</p><p>Das Statistische Bundesamt schlüsselt die Komponenten auf, aus denen sich der abiotische Direkte Materialeinsatz zusammensetzt. In den Jahren von 1994 bis 2022 gab es Veränderungen bei der Entnahme inländischer abiotischer Rohstoffe und der Einfuhr abiotischer Güter: Während die Entnahme von abiotischen Rohstoffen im Inland zwischen 1994 und 2022 um 410 Millionen Tonnen (– 37 %) zurückgegangen ist, stieg die Einfuhr von nicht-erneuerbaren Rohstoffen sowie Halb- und Fertigwaren um 45 Mio. t an (+ 11%). Der Anteil der importierten Güter am gesamten nicht-erneuerbaren Primärmaterialeinsatz erhöhte sich damit von 26 % im Jahre 1994 auf 38 % im Jahre 2022.</p><p>Betrachtet man die Entwicklung der verschiedenen Rohstoffarten zwischen 1994 und 2022 genauer, fallen folgende Entwicklungen auf (siehe Abb. „Entnahme abiotischer Rohstoffe und Einfuhr abiotischer Güter“):</p><p>Erfassung der indirekten Importe</p><p>Der abiotische Direkte Materialeinsatz berücksichtigt zwar die direkten, aber nicht die sogenannten „indirekten Materialströme“ der Einfuhren. Dazu gehören Rohstoffe, die im Ausland zur Erzeugung der importierten Güter genutzt wurden. Diese sind in den von der Handelsstatistik erfassten Mengen nicht enthalten. <br><br>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ Rohstoffproduktivität kann daher einen vermeintlichen Produktivitätsfortschritt vorspiegeln, wenn im Inland entnommene oder importierte Rohstoffe durch die Einfuhr bereits weiter verarbeiteter Produkte ersetzt werden.</p><p>Das ist durchaus realistisch: So nahmen zwischen den Jahren 1994 und 2022 die Einfuhren an überwiegend abiotischen Fertigwaren um 114 % deutlich stärker zu, als die von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/h?tag=Halbwaren#alphabar">Halbwaren</a>⁠. Deren Importe gingen sogar leicht zurück. Die von Rohstoffen sanken bis 2022 ebenfalls um 3 % (siehe Abb. „Abiotische Importe nach Deutschland nach Verarbeitungsgrad“). Bei Halbwaren handelt es sich um bereits be- oder verarbeitete Rohstoffe, die im Regelfall weiterer Be- oder Verarbeitung bedürfen, bevor sie als Fertigwaren benutzbar sind. Hierzu zählen beispielsweise Rohmetalle, mineralische Baustoffe wie Zement oder Schnittholz.</p><p>Die Anstiege der Fertigwaren gelten gleichermaßen für metallische Güter wie auch für Produkte aus fossilen Energieträgern, etwa Kunststoffe. Mit dem zunehmenden Import von Fertigwaren werden rohstoffintensive Herstellungsprozesse mitsamt den meist erheblichen Umwelteinwirkungen der Rohstoffgewinnung und -aufbereitung verstärkt ins Ausland verlagert.</p><p>Ergänzung des Indikators „Rohstoffproduktivität“ um indirekte Importe</p><p>Der Verlagerungseffekt der Rohstoffnutzung ins Ausland lässt sich durch die Umrechnung der Importe in ⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>⁠ abbilden – wie etwa beim ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ <strong>„Rohstoffverbrauch“</strong> (engl. „Raw Material Input“, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>⁠). Der Indikator berücksichtigt ergänzend zum direkten Materialeinsatz auch Importgüter mit den Massen an Rohstoffen, die im Ausland zu deren Herstellung erforderlich waren (siehe „Schaubild Stoffstromindikatoren“). Diese werden in der Fachsprache als „indirekte Importe“ bezeichnet. Der RMI stellt also eine Vergleichbarkeit zwischen den Einfuhren und inländischen Entnahmen her, indem der Primärrohstoffverbrauch im In- und Ausland gleichermaßen abgebildet wird.</p><p>Für eine Einschätzung, wie viele Rohstoffe eine Volkswirtschaft verwendet, macht es einen Unterschied, ob indirekte Stoffströme berücksichtigt werden oder nicht. Zwischen den Jahren 2010 und 2021 (letztes verfügbares Jahr) stieg die Summe aus abiotischer Rohstoffentnahme sowie direkten und indirekten Importen (RMIabiot) um mehr als 6 %. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=DMI#alphabar">DMI</a>⁠abiot, der die indirekten Importe nicht berücksichtigt, sank im selben Zeitraum jedoch um ca. 6 % (siehe Abb. „Rohstoffproduktivität“).</p><p>Bedeutung der Biomasse nimmt zu</p><p>Der abiotische Direkte Materialeinsatz bei der Berechnung der Rohstoffproduktivität für das Deutsche Ressourceneffizienzprogramm erfasst nur nicht-erneuerbare Rohstoffe. Das bedeutet, dass ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠ bei der Berechnung ausgeklammert wird. Doch die Bedeutung von Biomasse für die Rohstoffnutzung steigt, denn durch Biomasse können knapper werdende fossile und mineralische Rohstoffe ersetzt werden.<br><br>Sowohl der Anbau biotischer Rohstoffe als auch ihre Verarbeitung und Nutzung sind mit erheblichen Umwelteinwirkungen verbunden. Weiterhin sind die nachhaltig zu bewirtschaftenden Anbauflächen begrenzt. Deshalb ist es von wachsender Bedeutung, biotische Rohstoffe in die Berechnungen der Materialindikatoren zur Rohstoffproduktivität einfließen zu lassen.</p><p>Ein erweiterter Produktivitätsindikator: die Gesamtrohstoffproduktivität</p><p>Mit Verabschiedung des <a href="https://www.umweltbundesamt.de/themen/zweites-deutsches-ressourceneffizienzprogramm">2. Deutschen Ressourceneffizienzprogramms (ProgRess II)</a> und der Neuauflage der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> wurde dem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ „Rohstoffproduktivität“ eine weitere Produktivitätsgröße an die Seite gestellt: die „Gesamtrohstoffproduktivität“ (siehe Abb. „Gesamtrohstoffproduktivität“). Diese Größe beinhaltet – anders als der bisherige Indikator – neben den abiotischen auch die biotischen Rohstoffe und berücksichtigt nicht nur die Tonnage der importierten Güter, sondern den gesamten damit verbundenen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrrohstoffeinsatz#alphabar">Primärrohstoffeinsatz</a>⁠ (⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>⁠). Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ wird seit Veröffentlichung des <a href="https://www.bmuv.de/publikation/deutsches-ressourceneffizienzprogramm-iii-2020-bis-2023">Deutschen Ressourceneffizienzprogramms III</a> ausschließlich berichtet. Der Indikator ist auch in der <a href="https://www.bmuv.de/download/nationale-kreislaufwirtschaftsstrategie-nkws">Nationalen Kreislaufwirtschaftsstrategie (NKWS)</a> von 2024 verankert.</p><p>Zwischen den Jahren 2010 und 2030 soll der Wert jährlich im Durchschnitt um 1,6 % wachsen. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Der Indikator wird <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-gesamtrohstoffproduktivitaet">hier</a> ausführlich vorgestellt.</p>

Indikator: Gesamtrohstoffproduktivität

<p>Die wichtigsten Fakten</p><p><ul><li>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ stieg von 2010 bis 2022 um 27 %.</li><li>Die Gesamtrohstoffproduktivität soll nach dem Ziel in der Nachhaltigkeitsstrategie von 2010 bis 2030 pro Jahr um durchschnittlich 1,6 % wachsen.</li><li>Nachdem das durchschnittliche Wachstum viele Jahre unterhalb dieses Zielpfads verblieb, lag die Entwicklung nun zum ersten Mal darüber.</li><li>Die Gesamtrohstoffproduktivität ist ein Maß für die Effizienz der Rohstoffnutzung und bezieht auch Rohstoffe ein, die für die Herstellung der importierten Güter benötigt wurden.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Primärrohstoffe werden vor allem im Bergbau, aber auch in der Forst- und Landwirtschaft gewonnen. Diese wirtschaftlichen Aktivitäten haben teilweise massive Umweltwirkungen. Ein Ziel der Umweltpolitik ist deshalb, dass die Volkswirtschaft Rohstoffe möglichst effizient einsetzt. Um diese Entwicklung zu messen, setzt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ „Gesamtrohstoffproduktivität“ die Leistung der Volkswirtschaft mit der Rohstoffinanspruchnahme in Bezug.</p><p>Deutschland im- und exportiert jedoch zu einem großen Teil verarbeitete Güter und fertige Produkte. Der „Primärrohstoffeinsatz“ gibt das Ausmaß der tatsächlich eingesetzten Primärrohstoffe wieder. Er basiert auf den Rohstoff-Äquivalenten. Damit umfasst er das Gesamtgewicht der Primärrohstoffe, die benötigt werden, um die Güter herzustellen, die in der deutschen Volkswirtschaft produziert oder in diese importiert werden.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ erhöhte sich in Deutschland zwischen 2010 und 2022 um 27 %. Ein deutlicher Anstieg der Gesamtrohstoffproduktivität ist nach vorläufiger Berechnung im Jahr 2022 zu verzeichnen gewesen. Grund war ein deutliches Absinken des Rohmaterialeinsatzes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=RMI#alphabar">RMI</a>⁠) seit 2019. Das Bruttoinlandsprodukt ging in diesem Zeitraum lediglich zum Jahr 2020 zurück, stieg dann aber rasch wieder an. Zu beachten ist, dass 2020 ein Ausnahmejahr war, da u.a. aufgrund der COVID-19-Pandemie die Nachfrage und damit verbundene Lieferketten weltweit beeinflusst waren.</p><p>In der Neuauflage der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> von 2016 hat sich die Bundesregierung für das weitere Wachstum der Gesamtrohstoffproduktivität ein neues Ziel gesetzt: Das durchschnittliche jährliche Wachstum der Jahre 2000 bis 2010 von rund 1,6 % soll bis ins Jahr 2030 fortgesetzt werden. Das Wachstum von 2010 bis 2022 lag nach dem starken Anstieg der Gesamtrohstoffproduktivität zum Jahr 2022 nun erstmal über diesem Zielpfad.</p><p>Das <a href="https://www.bmuv.de/themen/ressourcen/deutsches-ressourceneffizienzprogramm">Deutsche Ressourceneffizienzprogramm III</a> (ProgRess III) zeichnet für die Jahre ab 2020 eine Vielzahl von Maßnahmen auf, mit denen die Rohstoffproduktivität weiter gesteigert werden soll. Im aktuellen Programm werden nun unter anderem auch die Themen ressourceneffiziente Mobilität und Potenziale und Risiken der Digitalisierung für die Ressourceneffizienz betrachtet. Die Bundesregierung hat zudem in 2024 die <a href="https://www.bmuv.de/themen/kreislaufwirtschaft/kreislaufwirtschaftsstrategie">Nationale Kreislaufwirtschaftsstrategie (NKWS)</a> veröffentlicht, welche Ziele und Maßnahmen zum zirkulären Wirtschaften und zur Ressourcenschonung aus allen relevanten Strategien zusammenführt. Die Gesamtrohstoffproduktivität ist darin auch als ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ verankert.</p><p>Wie wird der Indikator berechnet?</p><p>Die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gesamtrohstoffproduktivitt#alphabar">Gesamtrohstoffproduktivität</a>⁠ ergibt sich aus dem Verhältnis zweier Größen: Den Zähler bildet die Summe aus Bruttoinlandsprodukt und dem monetären Wert der deutschen Importe. Diese Größe wird durch die Volkswirtschaftliche Gesamtrechnung des Statistischen Bundesamtes bereitgestellt. Der Nenner enthält die Angaben zum „Primärrohstoffeinsatz“ in Deutschland durch Produktion und Importe. Beide Größen werden jeweils als Index (2010=100) dargestellt. Das Verfahren zur Bestimmung der indirekten Importe (⁠<a href="https://www.umweltbundesamt.de/service/glossar/r?tag=Rohstoffquivalente#alphabar">Rohstoffäquivalente</a>⁠) ist in einem <a href="https://www.umweltbundesamt.de/publikationen/rohstoffe-fuer-deutschland">Forschungsbericht</a> beschrieben. Aufgrund methodischer Anpassungen weichen die Zeitreihen ab 2010 von bisher veröffentlichten Zahlen ab. Merkliche Veränderungen treten insbesondere bei den Erzen auf, siehe den <a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Publikationen/Downloads/statistischer-bericht-rohstoffaequivalente-5853101217005.xlsx">Statistischen Bericht "Rohstoffäquivalente - Berichtszeitraum 2000-2021"</a>. Für die Berechnung der diesem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ zu Grunde liegenden Indexwerte nutzt das Statistische Bundesamt exaktere als die dort veröffentlichten Daten. Die Ergebnisse daraus sind in der Tabelle „<a href="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/UGR/rohstoffe-materialfluesse-wasser/Tabellen/gesamtrohstoffproduktivitaet-Index.html">Gesamtrohstoffproduktivität und ihre Komponenten, Index 2010 = 100</a>“ veröffentlicht.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „<a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/rohstoffe-als-ressource/rohstoffproduktivitaet">Rohstoffproduktivität</a>".</strong></p>

KI: Steigerung des Nutzungsgrads von Kunststoffabfällen durch KI-basierte Kombination von manueller Sortierung und Mikro-Automatisierung

Entwicklung eines innovativen Recyclingkonzeptes für die Herstellung von Schaumkeramikfiltern aus rezirkulierenden Schlickern und Filterbruch zur Reduzierung des Rohstoffverbrauches und der CO2-Emissionen

Entwicklung und Demonstration eines Verfahrens zur Minderung des Verbrauchs und der Schadstoffemission von Ottomotoren

Forschungsfertigung Batteriezelle Deutschland - Innovationslabore, FoFeBat4 - Forschungsfertigung Batteriezelle Deutschland - Innovationslabore

Dosis und Auswirkung anthropogener Schadstoffe in Vitrinen - Untersuchung des Stofftransports in der Gasphase für die Optimierung passiver Ausstellungsvitrinen zur Erhaltung von Kulturgut

Zielsetzung Die Schädigung von Museumsexponaten durch Einwirkung anthropogener Schadgase ist ein zentrales Problem als Folge der Belastung von Innenräumen mit Schadstoffen. Ein diesbezüglich weit verbreiteter Schadstoff ist Essigsäure, vertreten sind aber auch andere kurzkettige Carbonsäuren. Essigsäure, die im beantragten Vorhaben im Fokus stehen soll, kann bei einer Vielzahl von Materialien unter bestimmten klimatischen Bedingungen zu Korrosionsprozessen führen, so dass es unter Schädigung und Materialverlust am Objekt zur Ausbildung von Acetat-Ausblühungen (oder anderer kristalliner Phasen) kommen kann. Hieraus ergibt sich die Notwendigkeit des Schutzes solcher zum national wertvollen Kulturgut gehörender Objekte gegenüber schädlichen Umwelteinflüssen und folglich auch der Entfernung der anthropogenen Schadstoffe aus ihrem unmittelbaren Umfeld. Eine Museumsvitrine hat eine Schutzfunktion für die Objekte. Sie ist Instrument zur nachhaltigen präventiven Konservierung und hat die Aufgabe, Kulturgüter sicher und ästhetisch ansprechend auszustellen. Die Vitrine soll neben dem Schutz vor unberechtigtem Zugriff eine möglichst inerte, das heißt reaktionsarme Umgebung sowie ein auf die Bedürfnisse des Objekts angepasstes Klima bieten. Eine reaktionsarme Umgebung schließt per Definition auch den Schutz vor anthropogenen Schadstoffen, z.B. Essig- und Ameisensäure, Formaldehyd, Schwefeldioxid, Stickoxide, Ozon u.a. ein. Die Protektion vor den genannten äußeren Einflüssen ist durch eine niedrige Luftwechselrate der Vitrinen gegeben, d.h. der Präsentationsraum, der das Volumen für das auszustellende Sammlungsgut darstellt, tauscht nur wenig Luft mit der Umgebung der Vitrine aus. Durch die Reduktion des Luftaustauschs werden anthropogenen Schadstoffe am Eintritt in die Vitrine gehindert. Ein weiterer wesentlicher Aspekt sind jedoch interne Quellen, durch die Schadstoffe innerhalb der Vitrine freigesetzt werden. Zu diesen Schadstoffquellen können Bau- und Konstruktionsmaterialien der Vitrine, ihrer Innenausstattung, insbesondere Holz oder weitere Werkstoffe wie Silikon aber auch das Objekt selbst zählen. Routinemäßig durchgeführte Messungen von Schadstoffkonzentrationen und relativer Feuchte sind zwar ausreichend, um Handlungsbedarf an den Vitrinen nachzuweisen, sie sind jedoch nicht dazu geeignet, die Kinetik der Schadstoff- oder Wasserdampfverteilung nachzuvollziehen. Jede Optimierung der passiven Vitrine kann dazu beitragen, die Anschaffung von aktiv konditionierten Vitrinen unnötig zu machen und so wesentliche Ressourcen einzusparen. Aktiv konditionierte Vitrinen verschlechtern die CO2-Bilanz von Einrichtungen und bergen das Risiko technischer Havarien in sich, wie sie in der Museumspraxis leider immer wieder vorkommen. Im einfachsten Fall handelt es sich um Einbauten von Pumpen und Ventilatoren, die Luft aus dem Präsentationsraum zum Konditionierungsmittel transportieren. Aufwändigere Lösungen beinhalten auch verbaute Klimageräte, welche Luftfeuchte und Temperatur regulieren. Bei der Nachhaltigkeitsbetrachtung der Einbauten müssen Anschaffungskosten, Wartungsleistungen und Energieverbrauch der Geräte, Gesamttreibhausemission und Rohstoffverbrauch im Herstellungsprozess sowie die Recyclingfähigkeit der Geräte in deren Lebenszyklus beachtet werden. Passive Vitrinen hingegen kommen ohne fehleranfällige Elektronik aus, die ausfallen kann, so dass eine vergleichende Betrachtung immer zugunsten der passiven Vitrine ausfällt. Um der Problematik der Schadstoffdeposition anthropogenen Ursprungs auf vulnerablen Objekten sowie der damit einhergehenden Materialschädigung entgegenzuwirken, ist neben der weiteren Aufklärung der zugrundeliegenden Schädigungsmechanismen auch eine Charakterisierung der Situation in der passiven Vitrine erforderlich. (Text gekürzt)

Entwicklung eines Verfahrens zur Separation von Coatings und Textilien zur Wiederverwertung der Basisrohstoffe

Zielsetzung: Das Forschungsprojekt hat die Entwicklung eines Verfahrens zur Trennung von Beschichtungen und Textilien zum Ziel. Speziell geht es um persönliche Schutzausrüstung (PSA) in Form von Arbeitsschutzhandschuhen mit Nitrilkautschuk-Beschichtung, deren Basisrohstoffe zurückgewonnen und wiederverwertet werden sollen. Ansprüche an das Vorhaben sind das Schließen von Lücken in der Kreislaufwirtschaft sowie Vermeidung von Abfällen. Daher wird angestrebt, ein Downcycling der gewonnenen Rohstoffe zu vermeiden und aus ihnen wieder beschichtete Textilien herzustellen. Zur Umsetzung dieses Vorhabens soll ein mehrstufiges Recyclingverfahren zum Trennen der in den Schutzhandschuhen enthaltenen Wertstoffe entwickelt werden. Die von den Projektpartnern zu erarbeitenden und zu untersuchten Prozessschritte beinhalten dabei neben Wasch- und Sortiervorgängen auch das Schreddern und Feinmalen der Arbeitsschutzhandschuhe mit anschließendem Sieben oder Windsichten zur Rückgewinnung der Ausgangsmaterialien, um diese schmelzfiltern oder granulieren zu können. Anlass des Projektes ist der Anfall hoher Abfallmengen an beschichteten Handschuhen, was bspw. bei der Daimler Truck AG rund 5,8 Mio. Paare pro Jahr ausmacht. Potenziell als Abfall anfallen können ca. 124 Mio. Paare pro Jahr (ca. 6.200 t), wenn man von der Gesamtmenge produzierter Ware in diesem Segment ausgeht. Die beschichteten Handschuhe werden am Endes ihres Gebrauchs der Müllverbrennung zugeführt. Grund der thermischen Verwertung ist die Untrennbarkeit der Beschichtungen vom Substrat mit der bestehenden Prozesstechnik. Bei der Seiz Industriehandschuhe GmbH machen die zur Entsorgung aussortierten Handschuhe ca. 35 t aus, was 7 % von 500 t Reinigungsware entspricht. Unbeschichtete Textilien werden aufgerissen und z. T. in Abmischungen mit Neufasern in Vliesstoffen für den nicht sichtbaren Bereich im Automobil, als Putzlappen, Füllstoffe und in weiteren Anwendungen eingesetzt. Diese Verwendung recycelbarer Wertstoffe ist bisher für beschichtete Handschuhe nicht möglich. Eine Rückführung der Handschuhrohstoffe kann jedoch den Rohstoffverbrauch für Neuprodukte reduzieren und somit eine Energieeinsparung bei der Produktion begünstigen. Die nebenstehende Abbildung führt eine Soll-Ist-Darstellung der Kreislaufwirtschaft im geplanten Projekt auf. Beim Recycling von Arbeitsschutzkleidung allgemein, und bei Handschuhen im Besonderen, muss beachtet werden, dass es sich um Funktionstextilien handelt mit der Aufgabe, ihren Träger vor Umwelteinwirkungen zu schützen. Die Handschuhe stellen einen Verbundwerkstoff dar, der aus Polyamid 6.6 (Nylon) und Nitril-Butadien-Kautschuk (NBR) besteht. Der Nylon-Bestandteil ist ein linear aufgebautes Polyamid aus der Gruppe der Copolymere, welches nach dem Schmelzen zu Endlosfasern (Filamenten) ausgesponnen und zur textilen Fläche verstrickt wird. Der Synthesekautschuk für die Handschuhbeschichtung ist das Co-Polymerisat von Acrylnitril und 3-Butadien und wird zum Erreichen von Chemikalienfestigkeit auf die Arbeitsschutzhandschuhen aufgebracht. Die Arbeitsschutzhandschuhe mit NBR-Beschichtung werden derzeit einer Wiederverwendung nach Wiederaufbereitung durch Waschen zugeführt. Diese kann die Handschuhe jedoch nicht ewig vor Verschleiß und daher der thermischen Verwertung bewahren. Grund ist, dass derzeit keine passenden Trennverfahren für NBR-PA-Verbunde bekannt sind. Die Herstellung neuer Arbeitsschutzhandschuhe aus wiederaufbereiteten Bestandteilen ist ein Bestreben des Forschungsprojektes. Die bisherigen Recyclingansätze innerhalb der Textilindustrie sind dafür jedoch nicht geeignet. Im Rahmen des Projektes soll weiterhin eine Analyse des Produktportfolios beim Schutzhandschuhhersteller Seiz erfolgen, um Sortiervorgaben und Prozesswege für das Recycling zu definieren. Weiterhin sollen Vorgaben für Neuentwicklungen und die Beschaffung von Rohstoffen festgelegt werden, um die Produkte umweltneutraler zu gestalten. (Text gekürzt)

Fachbroschüre: Digitalisierung und natürliche Ressourcen

Das Forschungsprojekt „DigitalRessourcen“ hat die Ressourcenintensität und die Treibhausgasemissionen der digitalen Transformation in Deutschland sowohl auf Mikro- als auch auf Makroebene analysiert. In zehn Fallstudien (Mikroebene) wurde die Ressourcenintensität digitaler Anwendungen nach LCA-Methodik berechnet. Auf Makroebene wurden für die IKT-Branche der Rohstoffkonsum RMC ( raw material consumption ), der Rohstoffeinsatz ⁠ RMI ⁠ ( raw material input ) und der CO 2 -Fußabdruck der Digitalisierung in Deutschland für die Jahre 2000-2020 berechnet sowie sieben Szenarien für die Jahre 2020-2050 modelliert. Darauf aufbauend wurden Gestaltungsfelder für eine nachhaltigere Digitalisierung und weiterer Forschungsbedarf benannt. Veröffentlicht in Broschüren.

Anpassung an die Folgen der Klimaänderungen

<p>Das globale Klima ändert sich und damit ändern sich auch die Lebensbedingungen in Deutschland. Das Umweltbundesamt fördert die aktive Anpassung an den Klimawandel. Das Kompetenzzentrum Klimafolgen und Anpassung (KomPass) ist Wegweiser und Ansprechpartner für Anpassungsaktivitäten in Deutschland und fungiert als Schnittstelle zwischen Klimafolgenforschung, Gesellschaft und Politik.</p><p>Klimawandel und Anpassung in Deutschland</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ ist längst da, auch in Deutschland spüren wir ihn schon. Die Folgen sind vielfältig: Der Klimawandel hat Einfluss auf unser Wohnen, Arbeiten und unsere Gesundheit. Alle vier Jahre gibt der <a href="https://www.umweltbundesamt.de/publikationen/monitoringbericht-2023">Monitoringbericht zur Deutschen Anpassungsstrategie</a> einen Überblick über Folgen des Klimawandels und Anpassung in Deutschland. Die <a href="https://www.umweltbundesamt.de/publikationen/KWRA-Zusammenfassung">Klimawirkungs- und Risikoanalyse 2021</a> (KWRA) des Bundes ist die umfangreichste Analyse zu Risiken und Wirkungen des Klimawandels in Deutschland (siehe Themen-Artikel: <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/folgen-des-klimawandels/risiken-anpassungspotential">Risiken und Anpassungspotential</a>). ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ hilft, besser mit dessen Folgen umzugehen, Schäden zu verringern und gegebenenfalls existierende Chancen zu nutzen. Vor diesem Hintergrund betreiben Bund und Länder eine aktive und vorausschauende Anpassungspolitik (siehe Themen-Artikel&nbsp;<a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/anpassung-an-den-klimawandel-0">Anpassung an den Klimawandel</a> und <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung">Klimafolgen und Anpassung</a>).</p><p>Auf den Internetseiten des <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/kompetenzzentrum-kompass-0">Kompetenzzentrums Klimafolgen und Anpassung</a> im Umweltbundesamt (KomPass) finden Sie einen Überblick über die aktuellen Tätigkeiten des Bundes und der Länder. Zusätzlich können Sie auf eine Vielzahl von Informationen zu Klimaanpassung, möglichen Maßnahmen und Beispielen zugreifen. In der <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/werkzeuge-der-anpassung/tatenbank">Tatenbank</a> werden konkrete Projekte und zahlreiche Maßnahmen zur Anpassung an die Folgen des Klimawandels in Deutschland vorgestellt.</p><p>Mit dem Bundespreis „Blauer Kompass“ werden regelmäßig Projekte zur Vorsorge und Anpassung an die Folgen des Klimawandels im Rahmen eines <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/werkzeuge-der-anpassung/tatenbank/wettbewerb-tatenbank-blauer-kompass">Wettbewerbs Blauer Kompass</a> prämiert. Der <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/werkzeuge-der-anpassung/klimalotse">Klimalotse</a> ist ein Leitfaden, der Entscheidungsträger in Städten und Gemeinden etwa in Umweltämtern oder in der Stadtplanung dabei unterstützt, die Risiken des Klimawandels zu umschiffen und Chancen gezielt zu verfolgen.</p><p>Klimawandel und Anpassung in der EU</p><p>Als deutsche Anlaufstelle für die Belange der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ ist ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=KomPass#alphabar">KomPass</a>⁠ auch Partner für EU-weite Aktivitäten und Projekte zum Thema. KomPass kooperiert eng mit den nationalen Umweltämtern unserer Nachbarstaaten, der Europäischen Umweltagentur sowie der Europäischen Kommission, DG for Environment und DG Clima (Themenartikel: <a href="https://www.umweltbundesamt.de/themen/klima-energie/klimafolgen-anpassung/anpassung-auf-eu-ebene#climate-adapt">Anpassung auf EU-Ebene</a>). Auf europäischer Ebene unterstützt die gemeinsame Plattform der Europäischen Kommission und der Europäischen Umweltagentur <a href="https://climate-adapt.eea.europa.eu/">Climate-ADAPT</a> den Anpassungsprozess in Europa.</p><p>Klimaanpassung International</p><p>Das Umweltbundesamt ist auch international in die Themen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Anpassung_an_den_Klimawandel#alphabar">Anpassung an den Klimawandel</a>⁠ eingebunden und speist die deutsche Expertise in Vorhaben des <a href="https://unfccc.int/news/climate-adaptation-opportunity-to-build-a-better-world">UNFCCC </a>und <a href="https://www.oecd.org/en/topics/climate-adaptation-and-resilience.html">OECD </a>ein.</p>

1 2 3 4 528 29 30