API src

Found 27 results.

Is the immune system required to adapt to flowering time change?

Das Projekt "Is the immune system required to adapt to flowering time change?" wird vom Umweltbundesamt gefördert und von Universität Köln, Biozentrum, Botanisches Institut durchgeführt. For effective crop improvement, breeders must be able to select on relevant phenotypic traits without compromising yield. This project proposes to investigate the evolutionary consequences of flowering time modifications on a second trait of major importance for plant breeding: immunity. This will have implications both for understanding cross-talks between flowering time and defense network and for developing efficient breeding strategies. There is clear evidence that plant maturity influences levels and effectiveness of defense. Theoretical models actually predict that changes in life-history can modulate the balance between costs and benefits of immunity. Simultaneously, actors of the immune system have often been observed to alter flowering time. Two alternative and possibly complementary hypotheses can explain this link: genetic constraints due to the pleiotropic action of players in either systems, or co-evolution, if flowering-time changes modulate the cost-benefit balance of immunity. We will conduct field assays in Arabidopsis thaliana, using constructed lines as well as recombinant inbred lines and natural accessions, to differentiate the action of the two explanatory hypotheses. Using transcriptome analyses, we will identify defense genes associating with flowering time modification (f-t-a defense genes). We will quantify their expression along the assay and test whether it varies with both flowering time and fitness. We will further test whether flowering time and immunity interact to determine yield in tomato and potato.

Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield

Das Projekt "Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.

SP 3.1 Economic analysis on the effects of management and policy measures aiming at a reduction of the environmental burden from high-level agricultural production in the North China Plain

Das Projekt "SP 3.1 Economic analysis on the effects of management and policy measures aiming at a reduction of the environmental burden from high-level agricultural production in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Landwirtschaftliche Betriebslehre (410), Fachgebiet Landwirtschaftliche Betriebslehre (410b) durchgeführt. In the second phase of subproject 3.1 is envisaged to model representative farms. The models will be structured in a way that not only the production but also the material balances can be represented. In particular the nitrogen balance, the carbon balance and the water balance will be incorporated. Gas and particulate matter emissions can be considered as well, as far as there are sufficient data available. The modelling aims at integrating on farm level all baseline data surveyed in other sub-projects and at quantifying and valuating at farm level the already worked out management measures for reducing environmental burden while increasing production efficiency. The focus will be on measures for reducing nitrogen fertilisation, the interrelation between management activities and carbon/nitrogen balance, effects of nitrogen deposition on the operational nutrient management, water efficiency, etc. Another part for the impact analysis shall be the extent to which cropping practices elaborated in other sub-projects can be alternatives for the prevailing wheat-maize-rotation. Thereby cotton, groundnuts, soybeans, vegetables, and row intercropping are to be analysed and valued on farm level. Furthermore, the sub-project shall provide other sub-projects with indicators which are necessary in order to optimise breeding and management programmes under consideration of economic factors. Another aim of the sub-project is to carry out economic impact analyses of possible policy measures. To do so, realistic concepts of the Chinese agricultural policy as e.g. a reduction of the subsidies on means of production, in particular on nitrogen, water, etc. and their possible impact on quantities produced, input quantities applied, nutrient and water efficiency, income and other criteria are to be investigated. Furthermore, the influence of stages of an increasing mechanisation on production, income and structural changes can be investigated. Finally, open questions and approaches for further research will be derived through a sensitivity analysis.

SP 2.2 QTL analysis and optimization of breeding schemes for improved nitrogen-use efficiency of maize and wheat for sustainable cropping systems in the North China Plain

Das Projekt "SP 2.2 QTL analysis and optimization of breeding schemes for improved nitrogen-use efficiency of maize and wheat for sustainable cropping systems in the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Pflanzenzüchtung, Saatgutforschung und Populationsgenetik (350), Fachgebiet Angewandte Genetik und Pflanzenzüchtung (350a) durchgeführt. In China, agriculture needs to be intensified by increasing the productivity per unit land. However, the possibility to improve yield by further increasing the amounts of input is very limited due to already very high input amounts of fertilizers and irrigation water in the present cropping system. Hence, the development and characterization of improved varieties, especially with regard to traits of utmost importance for sustainable resource use, such as nitrogen- (NUE) and water-use efficiency (WUE), is crucial for a sustainable agriculture in the North China Plain. The decision about the requirement of one common or two separate breeding programs for developing varieties adapted to low and high N fertilization strongly depends on an appropriate estimation of the correlation between yield at different fertilization levels. Therefore, maize and wheat varieties are evaluated in multiple locations in the North China Plain. Adopting novel breeding approaches based on doubled haploids (DH) can speed up the process of developing new varieties substantially and rapidly provides suitable cultivars for new cropping systems. Therefore, optimum breeding strategies for maize breeding are modeled and simulated to optimize alternative breeding schemes with respect to the optimum allocation of test resources using different optimization criteria. Modeling of production systems and material flows is a powerful tool to increase sustainable resource use by identifying cropping systems, which combine reduced inputs with high yields. However, an appropriate model requires knowledge about the genetics of crop growth and yield and its interaction with environmental factors. Therefore, maize and wheat populations developed by the Chinese partners in the first project phase are phenotyped in multi-location field trials and genotyped with molecular markers to map quantitative trait loci (QTL) for NUE.

Simulated field environment with combined salt and drought stresses as a platform for phenotyping plant tolerance to salinity

Das Projekt "Simulated field environment with combined salt and drought stresses as a platform for phenotyping plant tolerance to salinity" wird vom Umweltbundesamt gefördert und von Technische Universität München, Lehrstuhl für Pflanzenernährung durchgeführt. Salinity occurs often simultaneously with drought stress. Therefore, breeding for tolerance to combined both stresses can contribute significantly to crop yield. However, classical selection in salinity has generally been unsuccessful, partly due to high variability of salt stress resulting from the different salinity and drought status. Unfortunately, the use of unrealistic stress protocols for mimicking salinity and drought stress is the norm rather than the exception in biotechnological studies. Therefore, the great challenge is to gain knowledge required to develop plants with enhanced tolerance to field conditions. Our overall hypothesis is that a realistic stress protocol simulating a field environment with combined salt and drought stress as a platform for precision phenotyping of plant tolerance to salinity may solve this problem. This study will demonstrate that highly managed stress environments can be created and key traits of plants can be characterised by using advanced non-destructive sensors that are able to identify relevant traits of plants.

Sicherung der genetischen Vielfalt von für die Unterlagenzüchtung relevanten Wildformen der Gattung Vitis

Das Projekt "Sicherung der genetischen Vielfalt von für die Unterlagenzüchtung relevanten Wildformen der Gattung Vitis" wird vom Umweltbundesamt gefördert und von Hochschule Geisenheim University, Zentrum Angewandte Biologie, Institut für Rebenzüchtung und Rebenveredlung durchgeführt. Eine hohe Resistenz gegen Bodenpathogene, gute Standortanpassung und Veredlungsaffinität sind die entscheidenden Merkmale von Unterlagen. Bei der Pathogenresistenz ist bei Reben die Widerstandsfähigkeit gegen die Reblaus Daktulosphaira vitifoiae essentiell, da die europäische Kulturrebe Vitis vinifera L über keinerlei Resistenzen verfügt und nur an wenigen Standorten ein wurzelechter Anbau möglich ist. Amerikanische Wildformen mit solchen Reblausresistenzen sind daher in der Unterlagenzüchtung von großer Bedeutung. Die langfristige Sicherung solcher Genotypen ist daher eine Voraussetzung für spätere Züchtungsarbeiten zur Erstellung neuer besserer Unterlagen. Daneben spielt auch die Standortanpassung eine wichtige Rolle. Vitis berlandieri ist hier am wichtigsten, da sie als einzige Art über eine hohe Kalkverträglichkeit verfügt und die Mehrheit der deutschen und europäischen Weinbaustandorte durch hohe Kalkgehalte im Boden charakterisiert sind. Kalkempfindliche Arten leiden unter Kalkchlorose mit stark vermindertem Wuchs. Aufgrund begrenzter Verfügbarkeit wurden jedoch nur wenige Pflanzen der Art in der Unterlagenzüchtung verwendet und damit nur ein Teil des Potentials der Art genutzt. In einem gemeinsamen Projekt mit dem United States Department for Agriculture wurden daher im September 2005 im ursprünglichen Verbreitungsgebiet der Art in Zentraltexas Samen von Wildformen gesammelt und die Hälfte davon in Geisenheim zur Keimung gebracht und ausgepflanzt. Derzeit werden mehr als 5000 Pflanzen in der in vivo Erhaltung. In den kommenden Jahren werden diese hinsichtlich ihrer relevanten Eigenschaften phänotypisch charakterisiert und in einem späteren Stadium auch genotypisiert, um für weitere Kreuzungs- und Selektionsarbeiten nutzbares material zu identifizieren.

Mechanisms of oxidative stress tolerance in rice and their application in the molecular breeding of genotypes adapted to stress environments

Das Projekt "Mechanisms of oxidative stress tolerance in rice and their application in the molecular breeding of genotypes adapted to stress environments" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz - Pflanzenernährung (Prof. Werner) durchgeführt. Abiotic environmental stresses are among the major factors limiting agricultural productivity in many developing countries. A common feature of various environmental stresses is the excessive accumulation of reactive oxygen species (ROS) in the leaf tissue leading to 'oxidative stress' and in turn visible leaf lesions, reduced growth, and in severe cases plant death. This project aims at identifying molecular mechanisms associated with oxidative stress tolerance in rice (Oryza sativa L.) under three different environmental conditions: (i) high tropospheric ozone concentration, (ii) zinc deficiency, and (iii) iron toxicity. This is achieved by dissecting naturally occurring genotypic variability in oxidative stress tolerance into distinct quantitative trait loci (QTL). Physiological mechanisms and genes underlying such tolerance QTL are identified by adopting an interdisciplinary approach including biochemical characterization of the antioxidant systems, transcriptome profiling, and experiments with gene knock-out mutants for candidate genes. Theoretical understanding of stress tolerance mechanisms obtained from laboratory experiments would be validated in field experiments together with international research institutions and partners in developing countries. At a later stage, the project strives to adopt emerging techniques in gene discovery such as single nucleotide polymorphism (SNP) based association mapping, and apply lessons learned from studying the 'model cereal crop' rice to other species such as barley (Hordeum vulgare L.). The project is expected to contribute to world-wide efforts in adapting crop production to stress environments by specifically advancing the understanding of oxidative stress tolerance.

Influence of landscape change on population structure of black-backed Swamphen (Porphyrio indicus) in Java island, Indonesia

Das Projekt "Influence of landscape change on population structure of black-backed Swamphen (Porphyrio indicus) in Java island, Indonesia" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Forstzoologisches Institut, Professur für Wildtierökologie und Wildtiermanagement durchgeführt. Landscape changes may influence population persistence and genetic diversity of black-backed Swamphen (Porphyrio indicus) in Java Island. The changes occurred rapidly, particularly in the coastal area, due to human population pressure. It may affect negatively the quality and compactness of natural ecosystems, particularly wetlands. In turn, it may lead to a reduction of critical resources and impair individual movement. The effect will be severe particularly for wetland-breeding specialist with poor flight capability like in black-backed Swamphen. It is reasonable that some local ornithologist warn about the bird species persistence. Limited information on its behavior and biology make the conservation efforts even more difficult. The species cryptic behavior impedes direct observation for habitat and movement studies, whereas fraught classification makes information on their population size and distribution debatable. Limited reliable information on these aspects may pose an obstacle to conserve their natural population in a rapidly changed environment. Information on population structure and the individual movement between sub populations are central for species conservation in a changing landscape. The project will address some important questions about the effect of the changes on population isolation and its suspected causes, rate of dispersal necessary to maintain genetic diversity, and biased dispersal. A new approach combining molecular genetic and GIS techniques may provide such information and may overcome the lack of direct observations. As guidance for data collection and analysis, general research question is defined as follows: 'How do landscape feature influence individual movement between population of Porphyrio indicus in Java Island ?' Following it, some sub questions may arise: What are the landscape structure and composition in past and recent years? How populations are spatially structured in recent and past years? Is there any evidence of individual exchange between subpopulations? Which landscape features are supposed to facilitate and inhibit individual exchange? Which landscape features do explain population structure better? Several work steps are planned: field work for collecting genetic material, laboratory work for isolation-amplification-analysis of DNA fragments, and desk work for landscape analysis. Raw genetic data of and landscape features will be combined to address the research questions.

Transformation von Perlhirse zur Verbesserung der Pilzresistenz

Das Projekt "Transformation von Perlhirse zur Verbesserung der Pilzresistenz" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Biologie, Biozentrum Klein Flottbek und Botanischer Garten durchgeführt. Pearl millet is the sixth most important crop world-wide and the main food source for the world's poorest and most food-insecure people in Africa and India. It is a high yielding cereal, tolerant to drought and can be grown in arid areas where maize and even sorghum fail. In Africa alone a total of 13.330.168 t pearl millet were produced during the harvest period of 2001 (FAO, 2001).Pearl millet is susceptible to many fungal diseases, for example downy mildew (Dm) caused by Sclerospora graminicola. Infection with this fungus causes yield losses up to 30Prozent every year (Safeeulla, 1976).Due to the poor nutrition situation in developing countries and the expanding desertification, it is of great interest to develop high-yielding and pathogen resistant pearl millet lines to help attain food security. In addition to classical breeding methods, genetic engineering is a promising approach to insert useful traits into plants. Besides, the use of pesticides to combat fungal attack can be reduced, which results in the preservation of the environment.Efficient regeneration and transformation systems, which are essential prerequisites for the proposed project, have been established in our group (Oldach et al., 2001; Girgi et al., 2002).The aim of the project is the production of fungal resistant pearl millet plants. The already established regeneration and transformation methods will be utilised to introduce fungal resistance genes like those encoding for antimicrobial proteins, defensins, chitinases and glucanases into susceptible pearl millet lines. The improvement of the resistance of transgenic pearl millet lines will be tested by phytopathological assays under laboratory conditions and later in controlled field experiments.

Züchtung von Rebunterlagen mit hoher Reblausfestigkeit und Anpassung an Trockenheit und Kalk-Chlorose

Das Projekt "Züchtung von Rebunterlagen mit hoher Reblausfestigkeit und Anpassung an Trockenheit und Kalk-Chlorose" wird vom Umweltbundesamt gefördert und von Hochschule Geisenheim University, Zentrum Angewandte Biologie, Institut für Rebenzüchtung und Rebenveredlung durchgeführt. Eine hohe Resistenz gegen Bodenpathogene, gute Standortanpassung und Veredlungsaffinität sind die entscheidenden Merkmale von Unterlagen. Bei der Pathogenresistenz ist bei Reben die Widerstandsfähigkeit gegen die Reblaus Daktulosphaira vitifoiae essentiell, da die europäische Kulturrebe Vitis vinifera L über keinerlei Resistenzen verfügt und nur an wenigen Standorten ein wurzelechter Anbau möglich ist. Klimaveränderungen erfordern neue Unterlagen mit hoher Reblausfestigkeit und besserer Standortanpassung. Aufgrund der derzeitigen Szenarien werden sowohl Trockenresistenz als auch Toleranz gegen hohe Kalkgehalte insbesondere in Verbindung mit hohem Bodenwassergehalte zukünftig von Bedeutung sein. Hierfür werden entsprechende Kreuzungen vorgenommen, die Sämlinge aufgezogen, auf ihre Reblausfestigkeit getestet und anschießend Prüfungen der Wurzelungs- und Veredlungsfähigkeit vorgenommen. Anschließend wird die Witterungs- und Bodenanpassung der Zuchtstämme insbesondere auf Trocken- und Kalkstandorten untersucht. Ziel ist die Entwicklung verschiedener Unteralgen, die eine vollständige Reblausresistenz mit hohen Trockenheits- und/oder Kalktoleranz kombinieren.

1 2 3