API src

Found 14 results.

Related terms

Fischregionen nach HUET

Dieses klassische Modell nach HUET (1949) nimmt eine längszonale Einteilung der Fließgewässer auf Basis des Gefälles und der Gewässerbreite vor. Es ist schematisch und generalisiert, biologische Komponenten werden nicht berücksichtigt. Die Bezeichnung der einzelnen Regionen erfolgt nach der typischer Weise dort vorkommenden Hauptfischart. Klassifikation der Fischregionen nach Gefälle und Gewässerbreite: - Forellenregion - Äschenregion - Barbenregion - Bleiregion

A09_1_Maßnahmenübersicht_punktell_Tab_GEK_Obere_Bode.xlsx

Anlage 9.1 GEK "Obere Bode" Maßnahmenübersicht - punktuelle Maßnahmen Bezeichnung Bauwerk im GEK AB260_BW01 Bauwerks- kategorie Rohr (3) Gewässer- name Alte Bode Gewässer- kennzahl GKZ 56854 Oberflächen- wasserkörper OWK SAL17OW29-00 Code-Name Regionaler Name LHW 56854-0009 Station 0+890 H-WertR-Wert LS 110LS 110 5755823 4445158 Gewäs- serord- nung Kurzbeschreibung Bauwerk BW 2Nutzung: Nutzung: Landwirtschafts- Landwirtschafts- /Forstweg-Querung /Forstweg-Querung BO232_BW01Stauanlage (6)Bode568SAL17OW01-00568-0147Wehr Krottorf62+590576002844437091Nutzung: nicht bekannt, Bauart: fest, Überfallwehr Baumaterial: Beton, Bauwerkslänge > 600 cm, Absturzhöhe: > 100 cm BO232_BW02Stauanlage (6)Bode568SAL17OW01-00568-0205Wehr Gröningen67+800575597844458191Nutzung: nicht bekannt, Nutzung: nicht Bauart: fest, Überfallwehr bekannt, Bauart: fest, Baumaterial: Beton, Überfallwehr, Bauwerkslänge: > 600 cm, Baumaterial: Beton Absturzhöhe: > 150 cm 568-0287Wehr Damm-Mühle/ Wehr Adersleben/ Wehr Wegeleben1Nutzung: nicht bekannt, Nutzung: nicht Bauart: fest, Überfallwehr bekannt, Bauart: fest, Baumaterial: Beton, Überfallwehr, Bauwerkslänge: > 500 cm, Baumaterial: Beton Absturzhöhe: ca. 180 cm 1Nutzung: sonstige, Bauart: Nutzung: sonstige, fest, Wehr Baumaterial: Bauart: fest, Wehr Beton, Absturzhöhe: ca. Baumaterial: Beton 190 cm 1Nutzung: nicht bekannt, Nutzung: nicht Bauart: fest, bekannt, Bauart: fest, Grundschwelle, Grundschwelle, Baumaterial: Beton, Höhe: Baumaterial: Beton ca. 20-50 cm BO232_BW03 BO232_BW04 BO233_BW01 Stauanlage (6) Stauanlage (6) Sohlbauwerk (4) Bode Bode Bode 568 568 568 SAL17OW01-00 SAL17OW01-00 SAL17OW02-00 BO233_BW02Stauanlage (6)Bode568SAL17OW02-00 BO233_BW02bStauanlage (6)Bode568SAL17OW02-00 BO233_BW03 BO233_BW04 BO233_BW05 BO233_BW06 BO233_BW07 BO234_BW01 BO234_BW02 Sohlbauwerk (4) Stauanlage (6) Stauanlage (6) Stauanlage (6) Stauanlage (6) Stauanlage (6) Stauanlage (6) Bode Bode Bode Bode Bode Bode Bode 568 568 568 568 568 568 568 Björnsen Beratende Ingenieure Erfurt GmbH SAL17OW02-00 SAL17OW02-00 SAL17OW02-00 SAL17OW02-00 SAL17OW02-00 SAL17OW02-00 SAL17OW02-00 568-0804 568-0460 568-0478 568-0505 568-0515 568-0532 568-0551 568-0570 568-0575 568-0584 Wehr Rodersdorf Grundschwelle Oeringer Brücke Quedlinburg 76+567 79+500 93+849 5750698 5749210 5739910 4444309 4446805 4442093 Fischzönose-typ Barbenregion (2) nicht durchgängig (2) Nutzung: nicht bekannt, Bauart: fest, Wehr, Baumaterial: Beton Äschenregion (1) nein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ: 100 bis 150 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 50 cm, Turbolenzgrad zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch 11Nutzung: nicht bekannt, Bauart: fest, Grundwehr, Baumaterial: Beton, Absturzhöhe: ca. 80 cm Nutzung: keine, Bauart: fest undurchlässig, Baumaterial: Beton 1Nutzung: nicht bekannt, Nutzung:keine, Bauart: Bauart: fest, Überfallwehr, fest undurchlässig, Baumaterial: Naturstein Äschenregion (1) Baumaterial: gebunden, Absturzhöhe: Naturstein gebunden ca. 180 cm 1Nutzung: nicht bekannt, Nutzung:keine, Bauart: Bauart: fest, Überfallwehr, fest undurchlässig, Äschenregion (1) Baumaterial: Naturstein Baumaterial: gebunden Naturstein gebunden 1Nutzung:keine, Bauart: Nutzung: nicht bekannt, Bauart: fest, Überfallwehr, fest undurchlässig, Äschenregion (1) Baumaterial: Naturstein Baumaterial: gebunden Naturstein gebunden 1Nutzung: sonstige; Bauart: Nutzung: sonstige, fest, Überfallwehr mit Bauart: fest Riegeln, Baumaterial: undurchlässig, Beton Baumaterial: Beton Wehr Bienert Thale Wehr EHW II 105+375 106+297 5735910 5735655 5735192 4433825 4433452 4432857 Rückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken Äschenregion (1)Nutzung: nicht bekannt, Bauart: fest, Überfallwehr Baumaterial: Beton, Absturzhöhe: ca. 150 cm Wehr Schröder Thale 104+876 Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ ca. 20-50 cmnicht durchgängig (2)Nutzung: nicht bekannt, Bauart: fest, Wehr, Baumaterial: Beton, Bauwerkslänge > 500 cm, Absturzhöhe > 100 cm 4435429 nicht durchgängig (2)nein (1)1 5736053 nein (1) Äschenregion (1)Nutzung: nicht bekannt, Bauart: fest, Überfallwehr Baumaterial: Beton 103+000 nein (1) Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ: 100 bis 150 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch Nutzung: keine, Bauart: fest, Überfallwehr, Baumaterial: Beton, Bauwerkslänge > 500 cm, Absturzhöhe > 100 cm Wehr Felsenmühle Thale 69_01Planung bereits vorhanden und teilweise in UmsetzungAnordnung von 69_04 Umgehungsgerinnen; 69_01 Ökologisch orientierter Umbau von Querbauwerken Nutzung: Nutzung: Wasserentnahme, Bauart: Wasserentnahme, fest, Abschlagswehr, Bauart: fest, Baumaterial: Beton, Abschlagswehr, sonstiges: Wehrsteuerung Baumaterial: Beton 4437302 69_01Umbau zur SohlgleiteRückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch1 5736173 gering (1) nicht durchgängig (2)4439367 101+010 Planung bereits vorhanden und teilweise in UmsetzungÖkologisch orientierter Umbau 69_01 von Querbauwerken 5738532 Wehr Weddersleben 69_01Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch97+320 4437949 gering (1) Anordnung von 69_04 Umgehungsgerinnen; 69_01 Ökologisch orientierter Umbau von Querbauwerken Wehr Dippenword 5737422 69_01Planung bereits vorhanden und teilweise in UmsetzungRückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 150 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch Barbenregion (2) Raum- widerstand Rückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerkennicht durchgängig (2) nein (1) Bemerkungen zur Maßnahme 69_02nein (1) Barbenregion (2) Vorzugs- lösung Rückbau von QuerbauwerkenBarbenregion (2)1 99+296 Rückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken nicht durchgängig (2)4440680 Wehr Maßmühle nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Strömungsgeschwindigkeit zu geringnein (1)5739066 4438590 MN_Nr Maßnahmenvorschläge Barbenregion (2)95+665 5738023 BarrierewirkungRückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochWehr am Brühl 98+318 nein (1) Ökologische Durchgängigkeit Nutzung: nicht bekannt, Bauart: fest, Überfallwehr, Baumaterial: BetonNutzung: nicht bekannt, Bauart: fest, Wehr, Bauamterial: Beton Wehr Kratzenstein/ Wehr Ellerwinkel Fisch- wanderhilfe vorhanden gering (1) Äschenregion (1) Äschenregion (1) Äschenregion (1) nein (1) nein (1) nein (1) nein (1) nein (1) nein (1) Datum FotoPrioritäre Maßnahme (Maßnah- menskizze) ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Alte_B ode\56854_009_Alte_Bod e_WH_Verrohrung.jpg14.07.2010nein (2) 31.05.2013nein (2) 31.05.2013nein (2) ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0147_Bode_WH_0709.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0205_Bode_WH_0708.JP G gering (1)23.10.2013ja (1) gering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0804_Bode_WH_0704.JP G31.05.2013nein (2) gering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0460_Bode_WH_0703.JP G24.10.2013ja (1) 31.05.2013nein (2) 22.10.2013nein (2) 69_01Umbau zur TeilgleiteAnordnung von 69_04 Umgehungsgerinnen; 69_01 Ökologisch orientierter Umbau von Querbauwerken69_01Planung bereits vorhanden und teilweise in Umsetzunggering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0478_Bode_WH_0698.JP G Anordnung von 69_04 Umgehungsgerinnen; 69_01 Ökologisch orientierter Umbau von Querbauwerken69_01Umbau zur Sohlgleitegering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68_Bode_Wehr_Dippenw ord.jpg 69_01Umbau zur Sohlgleitegering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0505_Bode_WH_0693.JP G 69_01Umbau zur Sohlgleite oder Teilsohlgleitegering (1)69_01Umbau zur Sohlgleitegering (1)69_01Umbau zur Sohlgleite oder Teilsohlgleite69_01Umbau zur Sohlgleite oder Teilsohlgleitegering (1)69_01Umbau zur Teilgleitegering (1)69_01Umbau zur Sohlgleite oder Teilsohlgleitegering (1) 69_01 Ökologisch orientierter Umbau von Querbauwerken 69_01 69_02 69_01 Rückbau von Querbauwerken; Ökologisch orientierter Umbau von Querbauwerken Ökologisch orientierter Umbau von Querbauwerken nein (1) Foto IST-Zustand...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0287_Bode_WH_0706.JP G Ökologisch orientierter Umbau von Querbauwerken Äschenregion (1) Bemerkungen, Sonstige 69_01 gering (1) Ökologisch orientierter Umbau von Querbauwerken 69_01 Ökologisch orientierter Umbau von Querbauwerken 69_01 Ökologisch orientierter Umbau von Querbauwerken 69_01 ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0515_Bode_WH_0691.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0532_Bode_WH_0689.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0551_Bode_WH_0685.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0570_Bode_WH_0684.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0575_Bode_WH_0681.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0584_Bode_WH_0679.JP G Bemes- sungs- fischart Lageplan ...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.1_BO_232_B W03_Wehr_Wegelebe n\Anlage_10.2.1.a_BO _232_BW03.pdf ...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.2_BO_233_B W01_Grundschwelle- Oeringer- Brücke\Anlage_10.2.2. a_BO_233_BW01.pdf ja (1)...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.4_BO_233_B W03_Wehr_Kratzenstei n\Anlage_10.2.4.a_BO _233_BW03.pdf 31.05.2013ja (1)...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.5_BO_233_B W04_Wehr_Maßmühle \Anlage_10.2.5.a_BO_ 233_BW04.pdf 31.05.0213nein (2) 31.05.2013 ja (1)...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.6_BO_233_B W06_Wehr_Felsenmüh le\Anlage_10.2.6.a_BO _233_BW06.pdf 22.10.2013ja (1)...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.7_BO_233_B W07_Wehr_Schröder\ Anlage_10.2.7.a_BO_2 33_BW07.pdf 31.05.2013ja (1)...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.8_BO_234_B W01\Anlage_10.2.8.a_ BO_234_BW01.pdf 23.10.2013ja (1)...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.9_BO_234_B W\Anlage_10.2.9.a_BO _234_BW02.pdf 22.10.2013 Seite 1/11 Anlage 9.1 GEK "Obere Bode" Maßnahmenübersicht - punktuelle Maßnahmen Bezeichnung Bauwerk im GEK BO234_BW04 BO234_BW06 BO234_BW07 BO236_BW01 BO236_BW02 Bauwerks- kategorie Sohlbauwerk (4) Sohlbauwerk (4) Stauanlage (6) Sohlbauwerk (4) Stauanlage (6) Gewässer- name Bode Bode Bode Bode Bode Gewässer- kennzahl GKZ 568 568 568 568 568 Oberflächen- wasserkörper OWK SAL17OW02-00 SAL17OW03-00 SAL17OW03-00 SAL17OW05-00 SAL17OW05-00 Code-Name Regionaler Name LHW 568-0596 568-0749 Messwehr Thale Station 107+512 Wehranlage Schöneburg 122+718 568-0769WKA Forellenmast Altenbrak/ Wehr Eickhoff Altenbrak 568-0839Wehranlage uh Neuwerk 124+747 131+739 568-0852WKA Neuwerker Hütte 133+000 H-WertR-Wert LS 110LS 110 5734134 5733408 5733509 5736142 5736326 4432685 4426143 4425558 4422821 4421856 Gewäs- serord- nung Kurzbeschreibung Bauwerk BW Fischzönose-typ 11Nutzung: Nutzung: Wasserregulierung, Art: Wasserregulierung, Absturz, Baumaterial: Art: Absturz, Beton, Bauwerkslänge: > Baumaterial: Beton 2 m, Absturzhöhe: ca. 2 m1Nurtung: Nutzung: Wasserentnahme, Wasserentnahme, Bauart: Bauart: fest fest, Streichwehr mit undurchlässig, hohem Absturz, Baumaterial: Beton, Forellenregion (4) Baumaterial: Beton, sonstiges: Gesamtlänge: ca. 500 cm, vorhandenes EU- Absturzhöhe: >100 cm Fischzuchtrecht, hohe Wasserentnahme 1Nutzung: nicht bekannt, Art: Absturz, Baumaterial: Naturstein gebunden; Bauwerkslänge: 200 cm, Absturzhöhe: 30-50 cm1Nutzung: Nutzung: Wasserentnahme, Bauart: Wasserentnahme, fest, Streichwehr mit Bauart: fest Absturz, Baumaterial: undurchlässig, Beton, Gesamtlänge: ca. Streichwehr, 300 cm, Absturzhöhe: Baumaterial: Beton >200 cmNurtung: nicht bekannt, Bauart: fest undurchlässig, Wehr, Baumaterial: BetonForellenregion (4) Nutzung: keine, Art: Absturz, Baumaterial: BetonForellenregion (4) BO236_BW05Stauanlage (6)Bode568SAL17OW05-00568-0880Sohlbauwerk oh Rübeland, beim HKZW135+823573632744197591Nutzung: nicht bekannt, Bauart: fest, Wehr mit Absturz, Baumaterial: Beton, Absturzhöhe > 100 cm BO236_BW06Sohlbauwerk (4)Bode568SAL17OW05-00568-0921Sohlschwelle bei Susenburg 139+960573520344183071Nutzung: keine, Art: Absturz, Baumaterial: Beton, Absturzhöhe: ca. 50 cm Ökologische Durchgängigkeit Barrierewirkung MN_Nr Maßnahmenvorschläge Vorzugs- lösung Bemerkungen zur Maßnahme Raum- widerstand Bemerkungen, Sonstige Ökologisch orientierter Umbau von Querbauwerken Nutzung: nicht bekannt, Art: Absturz, Baumaterial: Nutzung: nicht Beton; Bauwerkslänge: bekannt, Art: Absturz, 150 cm, Absturzhöhe: ca. Baumaterial: Beton 140 cm Nutzung: nicht bekannt, Art: Absturz, Baumaterial: Naturstein gebunden Fisch- wanderhilfe vorhanden Forellenregion (4) Forellenregion (4) Forellenregion (4) Forellenregion (4) nein (1) nein (1) nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 2 m, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hoch 69_01 69_01Umbau zur Teilgleite 69_01Umbau zur Teilgleite nicht durchgängig (2)61_01 66_03 61_01Umbau zur Teilgleite nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ 30-50 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 200 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochnein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochnein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ ca. 50 cm, Turbolenzgrad zu hochnein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 1,5 m, Turbolenzgrad zu hoch nein (1) 69_01Umbau zur Sohlgleite nein (1) nein (1) Ökologisch orientierter Umbau von Querbauwerken; Anordnung von 69_01 Umgehungsgerinnen 69_04 Anlage von Fischauf- und - abstiegsanlagen als technische Lösungen; 69_07 Anordnung von 69_04 Umgehungsgerinnen Rückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken Ökologisch orientierter Umbau von Querbauwerken; Anordnung von 69_01 Umgehungsgerinnen 69_04 Prioritäre Maßnahme (Maßnah- menskizze) gering (1)31.05.2013ja (1) gering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0749_Bode_WH_0582.JP G30.05.2013nein (2) gering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0769_Bode_WH_0577.JP G30.05.2013nein (2) gering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0839_Bode_WH_0599.JP G30.05.2013nein (2) gering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0852_Bode_WH_0603.JP G30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Kalte_ Bode\5682_0004_Kalte_B ode_WH_0628.JPG30.05.2013nein (2) Festlegung/ Regulierung des Mindestwasserabflusses; Anpassung von Wasserrechten Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 1 m, Turbolenzgrad zu hoch Datum Foto ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0596_Bode_WH_0672.JP G Ökologisch orientierter Umbau von Querbauwerken 69_01 Foto IST-Zustand 69_01Umbau zur Teilgleite69_01Umbau zur Teilgleitegering (1) 69_01Umbau zur Sohlgleitegering (1) 69_01Umbau zur Teilgleitegering (1) ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0880_Bode_WH_1303.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0921_Bode_WH_0615.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0926_Bode_WH_0612.JP G ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bode\5 68- 0940_Bode_WH_0611.JP G BO236_BW07Stauanlage (6)Bode568SAL17OW05-00568-0926Wehr uh Brücke bei Fischzucht Zordel140+402573538544186631Nutzung: unklar, Bauart: fest Nutzung: nicht bekannt, undurchlässig, Bauart: fest, Überfallwehr, Forellenregion (4) Baumaterial: Beton, Baumaterial: Beton sonstiges: Abgehender TurbinengrabenBO236_BW08Stauanlage (6)Bode568SAL17OW05-00568-0940Wehr bei Burgruine Susenburg141+834573466044181081Nutzung: nicht bekannt, Bauart: fest, Wehr, Baumaterial: BetonNurtung: nicht bekannt, Bauart: fest undurchlässig, Wehr, Baumaterial: BetonForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_01Umbau zur Sohlgleitegering (1)KB241_BW01Sohlbauwerk (4)Kalte Bode5682SAL17OW10-005682-00040+310573483244149111Nutzung: nicht bekannt, Nutzung: keine, Art: Art: Absturz, Baumaterial: Absturz, Baumaterial: Steinschüttung, Steinschüttung Absturzhöhe < 100 cmForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ < 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Umbau zur Sohlgleite oder Teilsohlgleitegering (1)KB241_BW02Sohlbauwerk (4)Kalte Bode5682SAL17OW10-005682-00040+380573490844149181Nutzung: nicht bekannt, Nutzung: keine, Art: Art: Absturz, Baumaterial: Absturz, Baumaterial: Steinschüttung, Steinschüttung Absturzhöhe ca. 50 cmForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ ca. 50 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Umbau zur Sohlgleite oder Teilsohlgleitegering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Kalte_ Bode\5682_0004_Kalte_B ode_WH_0631.JPG30.05.2013nein (2) KB241_BW03Stauanlage (6)Kalte Bode5682SAL17OW10-005682-00201+990575082444437671Nutzung: nicht bekannt, Bauart: fest, Streichwehr, Baumaterial: Beton, sonstiges: Holzaufsatz und hoher AbsturzForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ > 100 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_01Umbau zur Sohlgleite oder Teilsohlgleitegering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Kalte_ Bode\5682_0020_Kalte_B ode_WH_0638.JPG30.05.2013nein (2) 1Nutzung: Wasserstandsmessungen, Art: Schwellen, Nutzung: nicht Baumaterial: Beton, bekannt, Art: Absturz, beinträchtigte Baumaterial: Beton Gewässerlänge: ca. 500 cmgering (1)...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Warm e_Bode\568_0982_Warm e_Bode_WH_2938.jpgForellenregion (4)Forellenregion (4) WB238_BW01 Sohlbauwerk (4) Warme Bode 568 SAL17OW07-00 568-0982 Pegel Königshütte 0+540 5734413 4414770 Nurtung: nicht bekannt, Bauart: fest undurchlässig, Streichwehr, Baumaterial: Beton RB243_BW07Rohr (3)Rappbode56832SAL17OW12-0056832-023423+310572645744109072Landwirtschafts-/Forstweg- Nutzung: Querung, sonstiges: 3 Landwirtschafts- Rohre mit Mauerung /Forstweg-Querung RB243_BW08Sohlbauwerk (4)Rappbode56832SAL17OW12-0056832-025225+130572531344100142Nutzung: nicht bekannt, Art: Absturz, Baumaterial: Steinschüttung, Absturzhöhe ca. 40 cm Björnsen Beratende Ingenieure Erfurt GmbH Nutzung: nicht bekannt, Art: Absturz, Baumaterial: Steinschüttung Ökologisch orientierter Umbau von Querbauwerken; Anordnung von Umgehungsgerinnen Forellenregion (4) nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Schwellenhöhe bei MQ > 15 cm nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Turbolenzgrad zu hoch nein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ ca. 40 cm, Strömungsgeschwindigkeit zu gering nein (1) 69_01 69_04 Ökologisch orientierter Umbau von Querbauwerken; Anordnung 69_01 von Umgehungsgerinnen 69_04 Rückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken 69_01Umbau zur Sohlgleite69_01Umbau zur Sohlgleite oder Teilgleitegering (1) 69_01Umbau zur Sohlgleitegering (1) Löschwaser- entnahmestelle vorhanden ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Rappb ode\56832_0234_Rappbo de_WH_1289.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Rappb ode\56832_0252_Rappbo de_WH_1292.JPG 22.10.2013ja (1) 17.06.2013nein (2) 17.06.2013nein (2) Bemes- sungs- fischart Lageplan ...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.10_BO_234_ BW04_Messwehr_Thal e\Anlage_10.2.10.a_B O_234_BW04.pdf ...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.3_WB_238_ BW01_Pegel_Königshü tte\Anlage_10.2.3.a_W B_238_BW01.pdf Seite 2/11 Anlage 9.1 GEK "Obere Bode" Maßnahmenübersicht - punktuelle Maßnahmen Bezeichnung Bauwerk im GEK RB243_BW12 Bauwerks- kategorie Rohr (3) RB243_BW13Rohr (3) HS248_BW01Sohlbauwerk (4) Gewässer- name Rappbode Gewässer- kennzahl GKZ 56832 Oberflächen- wasserkörper OWK SAL17OW12-00 Code-Name Regionaler Name LHW 56832-0270 Station 26+950 H-WertR-Wert LS 110LS 110 5724155 4410319 Gewäs- serord- nung Kurzbeschreibung Bauwerk BW Fischzönose-typ 2Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4) Forellenregion (4) Forellenregion (4) Fisch- wanderhilfe vorhanden Ökologische Durchgängigkeit Barrierewirkung MN_Nr Maßnahmenvorschläge Ökologisch orientierter Umbau von Querbauwerken; 69_01 Rückbau von Querbauwerken; 69_02 Anordnung von 69_04 Umgehungsgerinnen nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Wassertiefe zu gering (im Rohr), Strömungsgeschwindigkeit zu geringnein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Strömungsgeschwindigkeit zu geringnein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ 50-80 cm, Turbolenzgrad zu hoch, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken 69_01 69_04 nein (1) Rappbode56832SAL17OW12-0056832-027527+480572398544098732Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungHassel568328SAL17OW17-00568328-00444+320572991344201932Nutzung: nicht bekannt, Nutzung: nicht Art: Absturz, Baumaterial: bekannt, Art: Absturz, Naturstein gebunden, Baumaterial: Absturzhöhe ca. 50-80 cm Naturstein gebundennein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ 15-30 cm Ökologisch orientierter Umbau von Querbauwerken; 69_01 Rückbau von Querbauwerken; 69_02 Anordnung von 69_04 Umgehungsgerinnen Vorzugs- lösung Bemerkungen zur Maßnahme Raum- widerstand 69_01Umbau zur Sohlgleite oder Teilgleite69_01Umbau zur Sohlgleite oder Teilgleitegering (1) 69_01Umbau zur Sohlgleitegering (1) 69_01Umbau zur Sohlgleitegering (1) Ökologisch orientierter Umbau von Querbauwerken; Anordnung von Umgehungsgerinnen gering (1) HS248_BW02Sohlbauwerk (4)Hassel568328SAL17OW17-00568328-0058 Pegel Hasselfelde5+795572925544212372Nutzung: Nutzung: Wasserstandsmessungen, Wasserstandsmessun Forellenregion (4) Art: Schwellen, gen, Art: Schwellen, Baumaterial: Beton Baumaterial: BetonHS248_BW03Sohlbauwerk (4)Hassel568328SAL17OW17-00568328-00605+920572914644213082Nutzung: nicht bekannt, Nutzung: nicht Art: Absturz, Baumaterial: bekannt, Art: Absturz, Naturstein gebunden, Baumaterial: Absturzhöhe ca. 30-50 cm Naturstein gebundenForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge > 50 m, ∆h Absturzhöhe bei MQ 50-80 cm, Strömungsgeschwindigkeit zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_01Umbau zur Sohlgleitegering (1) BM234_BW01Rohr (3)Bach aus dem Großen Mühlental568334SAL17OW03-00568334-00010+010573323144259132Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Strömungsgeschwindigkeit zu geringRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Rückbau von Querbauwerkengering (1) BM234_BW02Rohr (3)Bach aus dem Großen Mühlental568334SAL17OW03-00568334-00050+450573306744255292Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 15-30 cm, Wassertiefe zu gering, Turbulenzgrad zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Umbau zur Sohlgleitegering (1) BM234_BW03Rohr (3)Bach aus dem Großen Mühlental568334SAL17OW03-00568334-00201+990573190044250332Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Wassertiefe zu gering, Turbulenzgrad zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Rückbau von Querbauwerkengering (1) Forellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Schwellenhöhe bei MQ > 15 cm0+440573155044291742Nutzung: Nurtung: sonstiges, Wasserstandsmessungen, Art: Schwellen, Art: Schwellen, Baumaterial: Beton, Baumaterial: Beton, sonstiges: befestigtes beinträchtigte Kastenprofil für Gewässerlänge: ca. 500 angrenzenden Pegel cm56834-00585+710572875444284042Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm SAL17OW03-0056834-00716+250572781144281592Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)nicht durchgängig (2)56834SAL17OW03-0056834-00848+330572673044280952Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)56834SAL17OW03-0056834-00878+640572651444282342Nutzung: Landwirtschafts- Nutzung: /Forstweg-Querung, Landwirtschafts- sonstiges: 1 Rohr /Forstweg-QuerungForellenregion (4)nein (1)LB234_BW01Sohlbauwerk (4)Luppbode56834SAL17OW03-0056834-0005 LB234_BW02Rohr (3)Luppbode56834SAL17OW03-00LB234_BW04Rohr (3)Luppbode56834LB234_BW05Rohr (3)LuppbodeLB234_BW06Rohr (3)Luppbode Pegel Treseburg Anordnung von Umgehungsgerinnen; Ökologisch orientierter Umbau 69_04 von Querbauwerken 69_01 69_01Umbau zur Sohlgleitegering (1) Rückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Rückbau von Querbauwerkengering (1) Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Wassertiefe zu gering, Turbulenzgrad zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Rückbau von Querbauwerkengering (1) nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 30-100 cm, Wassertiefe zu gering, Turbulenzgrad zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Umbau zur Sohlgleite oder Teilgleitegering (1) nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 0-15 cm, Strömungsgeschwindigkeit zu geringRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_02Rückbau von Querbauwerkengering (1) SB250_BW02Stauanlage (6)Silberbach568352SAL17OW19-00568352-00131+240573633244333132Nutzung: nicht bekannt, Nutzung: nicht Art: Absturz, Baumaterial: bekannt, Art: Absturz, Beton, Absturzhöhe ca. 50 Baumaterial: Beton cmÄschenregion (1)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ ca. 50 cm, Wassertiefe zu geringRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_01Umbau zur Sohlgleitegering (1) SB250_BW05Sohlbauwerk (4)Silberbach568352SAL17OW19-00568352-00595+880573740844292482Nutzung: nicht bekannt, Nutzung: nicht Art: Absturz, Baumaterial: bekannt, Art: Absturz, Beton, Absturzhöhe ca. 30- Baumaterial: Beton 40 cmÄschenregion (1)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 30-40 cm, Turbulenzgrad zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_01Umbau zur Sohlgleitegering (1) SB250_BW06Sohlbauwerk (4)Silberbach568352SAL17OW19-00568352-00595+895573739344292382Nutzung: nicht bekannt, Nutzung: nicht Art: Absturz, Baumaterial: bekannt, Art: Absturz, Beton, Absturzhöhe ca. 30- Baumaterial: Beton 40 cmÄschenregion (1)nein (1)nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 30-40 cm, Turbulenzgrad zu hochRückbau von Querbauwerken; 69_02 Ökologisch orientierter Umbau 69_01 von Querbauwerken69_01Umbau zur Sohlgleitegering (1) nicht durchgängig (2)Rückstaulänge < 50 m, ∆h Absturzhöhe bei MQ 15-30 cm, Wassertiefe zu gering69_01Umbau zur Sohlgleitegering (1) SB250_BW08 Rohr (3) Silberbach 568352 Björnsen Beratende Ingenieure Erfurt GmbH SAL17OW19-00 568352-0063 6+210 5737584 4429030 2 Nutzung: sonstige, sonstiges: 1 Rohr Nutzung: sonstige Äschenregion (1) nein (1) 69_01 69_04 Ökologisch orientierter Umbau von Querbauwerken; Anordnung von Umgehungsgerinnen Bemerkungen, Sonstige Foto IST-ZustandDatum FotoPrioritäre Maßnahme (Maßnah- menskizze) ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Rappb ode\56832_0270_Rappbo de_WH_Verrohrung.jpg14.07.2010nein (2) 17.06.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) 30.05.2013nein (2) ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Rappb ode\56832_0275_Rappbo de_WH_1300.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Hassel \568328- 0044_Hassel_WH_0645.J PG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Hassel \568328- 0058_Hassel_WH_0646.J PG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Hassel \568328- 0060_Hassel_WH_0647.J PG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bach_ aus_dem_Großen_Mühle ntal\568334_0001_Bach_ aus_dem_Großen_Mühlta l_WH_1305.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bach_ aus_dem_Großen_Mühle ntal\568334_0005_Bach_ aus_dem_Großen_Mühlta l_WH_1309.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Bach_ aus_dem_Großen_Mühle ntal\568334_0020_Bach_ aus_dem_Großen_Mühlta l_WH_1312.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Luppb ode\56834- 0005_Luppbode_WH_059 5.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Luppb ode\56834_0058_Luppbo de_WH_1398.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Luppb ode\56834_0071_Luppbo de_WH_0597.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Luppb ode\56834_0084_Luppbo de_WH_1396.JPG 30.05.2010ja (1) 19.06.2013nein (2) 30.05.2013nein (2) 19.06.2013nein (2) kein Foto ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Silberb ach\568352- 0013_Silberbach_WH_13 52.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Silberb ach\568352- 0059_Silberbach_WH_13 44.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Silberb ach\568352- 0059_Silberbach_WH_13 46.JPG ...\05_Fotodokumentation _GEK_Obere_Bode\Fotod oku_Wanderhindernisse_ GEK_Obere_Bode\Silberb ach\568352- 0063_Silberbach_WH_13 42.JPG Bemes- sungs- fischart Lageplan ...\02_Anlagen_GEK_O bere_Bode\Anlage_10_ Maßnahmenskizzen\Anl age_10.2.11_LB_234_ BW01_Pegel_Tresebur g\Anlage_10.2.11.a_LB 234_BW01.pdf nein (2) 18.06.2013nein (2) 18.06.2013nein (2) 18.06.2013nein (2) 18.06.2013nein (2) Seite 3/11

Dürre/Auswirkungen: Auswirkungen von Dürren auf die Umwelt

Auswirkungen von Dürren werden für folgende Bereiche betrachtet: Gewässerökologie Fließgewässer Boden Geologie Grundwasser Fische und Fischnährtiere benötigen zum Überleben eine Mindestkonzentration von gelöstem Sauerstoff im Wasser. Die Konzentration des gelösten Sauerstoffs nimmt jedoch mit steigenden Wassertemperaturen ab. In kühlen, sauerstoffreichen Oberläufen und Quellen leben vor allem temperatur- und sauerstoffsensible Arten: Diese können durch steigende Temperaturen verdrängt werden; eine Abnahme der Populationsdichten ist wahrscheinlich. In den größeren Fließgewässern in Hessen werden bei hohen Wassertemperaturen und damit sinkenden Sauerstoffgehalten - auch auf Grund der stärkeren Nutzung (Wehre, Wasserkraft) - wahrscheinlich die größeren Probleme auftreten. Für empfindliche Arten der Äschen- und Barbenregion ist beispielsweise mit häufigeren Stressphasen in Hitzesommern zu rechnen. Auch hier werden anspruchsvolle Arten durch weit verbreitete Generalisten verdrängt; eine Verschlechterung des ökologischen Zustandes nach der Wasserrahmenrichtlinie (WRRL) kann eintreten. Insbesondere die Quellregionen und Oberläufe der Bäche und Niederungsfließgewässer im hessischen Ried können häufiger trockenfallen. Für den dann erforderlichen Rückzug der Fische und Fischnährtiere ist es wichtig, dass – ähnlich wie bei höheren Abflüssen – durch naturnahe Strukturen entsprechende Habitate (z.B. Kolke, große Tiefen- und Breitenvarianz) vorhanden sind. Für die spätere Wiederbesiedlung ausgetrockneter Abschnitte ist es wichtig, dass die Durchwanderbarkeit nicht durch Wehre und andere Wanderhindernisse verhindert wird. Hitzeperioden, wie z.B. der Sommer 2018 bedeuten zudem Dauerstress. Besonders bei den Fischen ist die Anfälligkeit für Krankheiten erhöht. In zunehmend milderen Wintern fehlen entwicklungsphysiologisch wichtige „Kältereize“. So kann es durch die Desynchronisation der Entwicklungsprozesse der Gewässerorganismen, wie z.B. Verschiebung von Laich- und Schlupfzeitpunkten zu einer Veränderung in der aquatischen Lebensgemeinschaft kommen. Zunächst fallen bei zurückgehenden Abflüssen auch die Wasserstände. Dadurch wird der Lebensraum für aquatische Organismen eingeschränkt. In Schiffbaren Gewässern gehen die Transportkapazitäten durch zurückgehende Ablademöglichkeiten zurück bis hin zur Einstellung der Schifffahrt. Durch geringere Abflüsse werden Abwasseranteile und Schadstoffe in den Gewässern weniger verdünnt und treten in höheren Konzentrationen auf. Wasserkraftwerke können entsprechend den geringeren Abflüssen oder Fallhöhen weniger Energie erzeugen. Thermische Kraftwerke müssen ggf. ihre Leistung verringern, um mit ihren Abwärmeeinleitungen die Gewässer nicht zu stark aufzuheizen. In feuchten und gut belüfteten Böden leben unzählig viele Tiere, Pflanzen und Mikroorganismen. Dazu zählen Würmer, Käfer und Ameisen aber auch Wirbeltiere wie der Maulwurf. Als sogenannte Makroorganismen sind sie Primärzersetzer der abgestorbenen Pflanzenreste und tragen durch ihre Wühltätigkeiten zu einem guten Bodengefüge bei. Wichtige Bodenorganismen sind auch Algen, Pilzen und Bakterien – die Mikroorganismen. Sie zersetzen die Reste der Primärzersetzung und die abgestorbenen Pflanzenreste zu Humus (Humifizierung) und anorganische Nährstoffe für Pflanzen (Mineralisierung), binden Stickstoff aus der Luft, und unterstützen so die Nährstoffversorgung von Pflanzen. Daher sind sie wichtige Komponenten des Bodens. Anhaltende Trockenheit im Boden führt zu einer Minderung der Aktivität dieser Lebewesen und kann zu einer Verschiebung der Artengruppen oder bei extremer Trockenheit sogar zu ihrem Absterben führen. Die Bodenlebwesen stabilisieren auch das Bodengefüge, indem sie zu Bildung von Ton-Humus-Komplexen beitragen. Diese und weitere Ausscheidungen der Organismen (Musilage) erhöhen wiederrum die Wasseraufnahmefähigkeit von Böden und leisten so einen wichtigen Beitrag zum Landschaftswasserhaushalt. Die Beispiele zeigen, dass infolge der veränderten Biodiversität im Boden die Bodeneigenschaften negativ beeinflusst werden können, die z.B. für die Pflanzenproduktion relevant sind. Die bisherige Annahme war, dass diese Mikroorganismengemeinschaften sich bei einer Wiedervernässung schnell erholen. Neuere Studien 1 zeigen allerdings, dass dies nicht der Fall sein muss und die Gemeinschaften sich nachhaltig verändern können. 1 de Vries, de Vries, F.T., Griffiths, R.I., Bailey, M. et al. (2018): Soil bacterial networks are less stable under drought than fungal networks. Nature Communications 9, 3033. DOI: https://doi.org/10.1038/s41467-018-05516-7 ) Länger anhaltende Trockenheit kann zu tiefreichender Austrocknung des Bodens führen. Die Folge ist ein geringeres Angebot pflanzenverfügbaren Wassers (nutzbare Feldkapazität, nFK) im Wurzelraum. Bei weniger als 30 % nFK kommt es zu Trockenstress bei Pflanzen. Dies kann während der Vegetationsperiode zu Trockenschäden führen und möglichen Ertragseinbußen in der Land- und Forstwirtschaft zur Folge haben. Zudem treten während länger anhaltender Trockenperioden Schrumpfungsrisse in tonigen Böden auf. Kommt es zu erneuten Niederschlägen, kann dieses Wasser rasch und relativ ungefiltert in das Grundwasser gelangen und dabei Nähr- und Schadstoffe transportieren. Andererseits neigen ausgetrocknete Böden bei kurzen und sehr intensiven Regenereignissen zur Verschlämmung. Im Gegensatz zu durchfeuchteten Böden kann dann nur wenig Wasser während eines Starkregens aufgenommen werden. Dadurch steigt die Gefahr von Oberflächenabfluss und von Bodenerosion deutlich an. Darüber hinaus führt anhaltende Trockenheit zum Rückgang oder zum völligen Erliegen der Sickerwassermengen in Böden. Dies führt zu deutlich geringeren Grundwasserneubildungsraten. In stadtnahen oder städtischen Gebieten tragen unversiegelte, begrünte Flächen durch die Verdunstung von Wasser durch Pflanzen und Boden zur lokalen Abkühlung bei. Die Kühlleistung ist jedoch vom verfügbaren Bodenwasser abhängig, das bei anhaltender Trockenheit geringer wird und dadurch eine Abnahme der Kühlleistung bedingt. Durch Verdichtung, höhere Grobbodenanteile und Versiegelung weisen Stadtböden meist schon ein eher geringes Wasserspeicherungsvermögen auf, das bei anhaltender Trockenheit schnell erschöpft ist. Die Folgen sind vor allem in warmen, tropischen Nächten zu spüren, in denen die innerstädtischen Bereiche deutlich schlechter abkühlen. Um im Sommer einen Hitzestau in Städten zu vermeiden ist es deshalb unter anderem wichtig, in den Städten funktionsfähige Böden zu erhalten oder wiederherzustellen. In weiten Teilen von Hessen stehen oberflächennah Böden oder geologische Schichten an, die ein hohes Maß an organischen oder feinkörnigen Bestandteilen (meist Ton, Schluff oder Lehm) besitzen, wie u. a. feinkörnige Auensedimente, tertiäre Tone, Verwitterungsprodukte, Torfe oder Mudden, sowie Lösslehm. Diese Einheiten bilden die sogenannten setzungsempfindlichen Schichten aus. Setzungsempfindliche Schichten besitzen die Eigenschaft bei einer Änderung des Wassergehaltes stark das Volumen zu verändern. Bei einer Zunahme des Wassergehaltes kommt es zu einer Quellung der Schichten, so dass eine Hebung der Geländeoberfläche die Folge sein können. Reduziert sich der Wassergehalt hingegen, fangen die Schichten an zu Schrumpfen. Als Folgen dieser Schrumpfungen sind Setzungen an der Erdoberfläche möglich, die Schäden an Bauwerken verursachen können. Gerade die quellfähigen Tone reagieren besonders stark auf eine Änderung des Wassergehaltes. Je mächtiger und höher der Anteil der Tone ist, desto gravierender können die Setzungen an der Geländeoberfläche ausfallen. Bei geotechnischen Schrumpfversuchen unter Laborbedingungen wurden nicht selten Volumenreduzierungen von mehr als 50% festgestellt. Bei einer länger anhaltenden Trockenheit können tiefreichende Austrocknungen von Böden und geologischen Schichten eintreten. Setzen sich diese Schichten aus den beschriebenen setzungsempfindlichen Schichten zusammen, sind Setzungen an der Geländeoberfläche die Folge. Meist eher unproblematisch ist dies, wenn die Setzungen unterhalb eines Bauwerkes gleichmäßig stattfinden. Kritisch wird es jedoch, wenn die Setzungen ungleichmäßig sind. Dies kann z. B. passieren, wenn unter einem Bauwerk an der einen Seite setzungsempfindliche Schichten und an der anderen Seite ein fester Boden vorhanden sind. In diesem Fall kann es zu einem „Zerreißen“ des Gebäudes durch ungleiche Setzungen kommen. Gerade in den letzten Jahren haben sich die Meldungen über Setzungsschäden an Gebäuden oder Infrastrukturen in Hessen gehäuft. In Zeiten niedriger Grundwasserstände konnten in Hessen in der Vergangenheit unterschiedliche Auswirkungen beobachtet werden. So können niedrige Grundwasserstände zu lokalen Engpässen in der Wasserversorgung führen und grundwasserabhängige Biotope und Feuchtgebiete schädigen. Bei sehr niedrigen Grundwasserständen können Setzrissschäden an Gebäuden und Verkehrsinfrastruktur eintreten und in der Landwirtschaft können flache Beregnungsbrunnen trockenfallen. Darüber hinaus führen Fließgewässer, die aus dem Grundwasser gespeist werden, früher Niedrigwasser, was wiederum Auswirkungen auf die Gewässerökologie haben kann. Kleinere Gewässer können im Spätsommer sogar ganz trockenfallen. Im wasserwirtschaftlich bedeutsamen Hessischen Ried, wo eine intensive Grundwasserbewirtschaftung stattfindet, kam es in der Vergangenheit immer wieder zu grundwasserverbundenen Nutzungskonflikten zwischen der Landwirtschaft, der Forstwirtschaft, dem Naturschutz, dem Siedlungswesen und der Wasserversorgung. Trockenperioden mit niedrige Grundwasserstände hat es immer wieder gegeben. Ausgeprägte Trockenperioden treten zyklisch etwa alle 10-20 Jahre auf, beispielsweise in den 70er und 90er Jahren. Infolge der wärmeren und trockeneren Sommer ist zukünftig mit rückläufigen Quellschüttungen zu rechnen. Dies könnte zur Folge haben, dass die auf örtlichen Gewinnungsanlagen beruhende, dezentrale Trinkwasserversorgung durch Quellwässer oder Flachbrunnen in den Mittelgebirgen während der Sommermonate zunehmend gefährdet ist. Für die Trinkwasserversorgung ist neben dem zukünftigen Wasserdargebot die Entwicklung des zukünftigen Wasserbedarfs von Bedeutung. Infolge der zukünftig wärmeren und trockeneren Sommer ist mit einem weiteren Anstieg des Spitzenwasserbedarfs zu rechnen. Die maßgeblichen Einflussgrößen für den mittleren Wasserbedarf (Grundlast) sind die demographische Entwicklung und die Entwicklung des Pro-Kopf-Verbrauchs. Der Pro-Kopf-Verbrauch wird wiederum durch das Verbraucherverhalten und den technologischen Fortschritt bestimmt. Das heißt, dass der jährliche bzw. mittlere Wasserbedarf stärker von der Bevölkerungsentwicklung und dem Pro-Kopf-Verbrauch als vom Klimawandel beeinflusst wird. Aktuell beobachten wir ein starkes Bevölkerungswachstum in den Kernräumen der Rhein-Main-Region. Sollte dieser Trend andauern, ist von einer Zunahme des mittleren Wasserbedarfs auszugehen. Auch ist davon auszugehen, dass der Bedarf an Beregnungswasser in der Landwirtschaft infolge trockenerer und wärmerer Sommer sowie verlängerter Vegetationsperioden weiter deutlich zunehmen wird. Der erhebliche Mehrbedarf an Beregnungswasser kann eine direkte Konkurrenzsituation zwischen der Trinkwasserversorgung einerseits und landwirtschaftlicher Beregnung andererseits bewirken. Elisabeth Schlag Gewässerökologie Tel.: 0611-6939 759 Cornelia Löns-Hanna Fließgewässer Tel.: 0611-6939 599 Björn Glasner Boden Tel.: 0611-6939 728 Christina Heinrichs Geologie Tel.: 0611-6939 904 Mario Hergesell Grundwasser Tel.: 0611-6939 704 Broschüre Weiterführende Informationen zu Anpassungen an den Klimawandel

Ökologie der Fließgewässer

Foto: LANUV/FB 55 Foto: LANUV/FB 55 Foto: LANUV/FB 55 Foto: LANUV/FB 55 Unsere Fließgewässer sind Teil des weltweiten Wasserkreislaufs und durchziehen als Lebensadern in einem dichten Netz unsere Landschaft. Von den Quellen der kleinen Bäche bis zur Mündung der großen Ströme in das Meer stellen sie eine Vielzahl von Lebensräumen für Tiere und Pflanzen zur Verfügung. Von der Quelle bis zur Mündung verändert sich das Aussehen eines Fließgewässers, und damit auch die Besiedlung. Oft ist das Gefälle im Oberlauf des Gewässers (nahe der Quelle) sehr stark und nimmt zur Mündung hin ab. Daher wird auch die Fließgeschwindigkeit des Gewässers geringer, je näher der Fluss der Mündung kommt. Gleichzeitig nehmen Wassertemperatur und Nährstoffgehalt zu, der Sauerstoffgehalt dagegen ab. Als Folge findet man in den verschiedenen Fließgewässer-Regionen unterschiedliche Organismen. Bekannt ist die Gliederung eines Fließgewässers anhand von Fisch – Leitarten: Obere sowie Untere Forellenregion, Äschenregion, Barbenregion, Brachsenregion und Kaulbarschregion. Aber auch für die anderen Gewässerorganismen (Makrozoobenthos, Wasserpflanzen und Algen) sind die Unterschiede hinsichtlich der abiotischen Faktoren Substrat und Fließgeschwindigkeit bzw. Strömung wesentlich, weshalb die verschiedenen Gewässerabschnitte unterschiedliche und jeweils charakteristische Besiedlungen aufweisen. Ein komplexes Nahrungsnetz verbindet die verschiedenen trophischen Ebenen: Bakterien, Algen und Wasserpflanzen nutzen die Lichtenergie, um mittels Photosynthese anorganisches CO2 in Biomasse umzuwandeln. Sie sind die Primärproduzenten. An der Gewässersohle leben die zahlreichen Organismen des Makrozoobenthos. Schnecken und Eintagsfliegenlarven weiden den durch Bakterien und Algen gebildetet Aufwuchs ab. Bachflohkrebse und Köcherfliegenlarven zerkleinern Laubblätter, die von der Ufervegetation ins Wasser gefallen sind, ebenso wie die Reste von abgestorbenen Wasserpflanzen. Filtrierer wie z.B. Muscheln filtern ihre Nahrungspartikel aus dem Wasser. Andere Arten des Makrozoobenthos, wie z.B. Steinfliegenlarven, Turbellarien und Egel, leben räuberisch. Auch Fische (z.B. Elritze oder Hasel) sowie Amphibien oder kleinere Wasservögel ernähren sich vom Makrozoobenthos. Am Ende der Nahrungskette stehen Raubfische (Hecht, Zander oder Barbe) oder fischfressende Wasservögel, wie der Kranich oder der Fischreiher. Bakterien und Mikroorganismen setzen das tote organische Material abgestorbener Tiere und Pflanzen unter aeroben oder anaeroben Bedingungen wieder zu Nährstoffen um, die dann erneut von den Primärproduzenten zur Photosynthese und zum Wachstum genutzt werden können. In unseren über 12.000 Fließgewässern in Nordrhein-Westfalen mit einer Gesamtlänge von mehr als 46.000 km leben über 800 Arten der wirbellosen Tiere, rund 260 Arten der Wasserpflanzen, etwa 1.700 Arten der Algen und 60 Arten der Fische. All diese Tiere und Pflanzen zeigen spezielle Anpassungen an die besonderen Verhältnisse in einem Fließgewässer. Strömung, Sauerstoffgehalt, Wassertemperatur, Nährstoffangebot, Lichtverhältnisse und vieles mehr bestimmen das Leben im fließenden Wasser. Aufgrund des hohen Spezialisierungsgrades der Wasserorganismen eignen sie sich sehr gut als Indikatoren für den ökologischen Zustand der Fließgewässer. Biologische Qualitätskomponenten Das LANUV NRW überwacht die Ökologie der Fließgewässer im Rahmen der Umsetzung der Wasserrahmenrichtlinie in einem engen räumlichen und zeitlichen Raster. Die biologischen Qualitätskomponenten werden regelmäßig an ca. 1500 Messstellen im gesamten Land erhoben. Die festgestellten Arten geben Auskunft über den aktuellen ökologischen Zustand des Gewässers. Gewässerüberwachung

Wasser/Fließgewässer/Wassertemperatur (Vorhersage): Vorhersage von Wassertemperaturen an Fließgewässern

Die Wassertemperaturen in Fließgewässern werden maßgeblich durch die vorherrschende Lufttemperatur und den Durchfluss im Gewässer beeinflusst. Sommerlich hohe Lufttemperaturen und einfallende Strahlung führen in Verbindung mit geringen Durchflüssen zu höheren Wassertemperaturen. Außerdem werden z. T. die Temperaturen durch die Einleitung von Abwärme von Kraftwerken und anderen industriellen Einleitern beeinträchtigt. Die Folge von langanhaltenden hohen Wassertemperaturen ist die Schädigung der Biozönose (Gemeinschaft von Organismen) der Fließgewässer. Hierbei kann es z. B. zu Fischsterben aufgrund des zurückgehenden Sauerstoffgehalts oder bei temperaturempfindlichen Fischen kommen. Um dies zu verhindern, gab es für die großen hessischen Gewässer wie Rhein und Main eine in der Fischgewässerrichtlinie festgelegte Grenztemperatur von 28°C. Mit Auslaufen der Richtlinie Ende 2013 wurde der Grenzwert durch einen Orientierungswert von 25°C gemäß den Anforderungen an die Europäische Wasserrahmenrichtlinie für die Barbenregion abgelöst. Die Richtlinie sieht vor, dass durch Einschränkungen möglicher Abwärmeeinleitungen und zusätzlicher Abgaben von Talsperren, die Temperatur den Orientierungswert nicht stark überschreiten soll. Für die Steuerung der Einleitung, für die Prognose langfristiger Entwicklungen (z. B. durch den Klimawandel) und als unterstützender Parameter für die Gewässergüte, ist es notwendig die aktuellen Wassertemperaturen zu erfassen und in einer Datenbank zu speichern. Anwendung von Wassertemperaturvorhersagemodellen erlaubt es kritische Situationen frühzeitig zu erkennen. Aktuelle Wassertemperaturen an Pegeln finden Sie im WISKI-Web Downloadbare Temperaturdaten sowie weitere Standardparameter (u. a. Stickstoff, Phosphor und pH-Wert) für verschiedene Stationen einzelner Jahre finden Sie im Messdatenportal LARSIM (Large Area Runoff Simulation Modell) ist das in Hessen eingesetzte Wasserhaushalts- und Wärmemodell mit welchem sowohl die Hochwasservorhersage, als auch die Wassertemperaturvorhersage, betrieben wird. Für Hessen wurden zur Anwendung in der Hochwasservorhersagezentrale vier flächendeckende Wasserhaushaltsmodelle auf Basis des Modells erstellt: das Lahnmodell, das Modell für die hessischen Main- und Rheinzuflüsse das Modell für den hessischen Wesergebietsanteil und das Werramodell Das LARSIM-Wärmemodell stellt eine Erweiterung des Wasserhaushaltsmodells dar und ermöglicht zusammen mit den simulierten Wasserflüssen auch eine Darstellung der Wassertemperaturen an den simulierten Gewässerstrecken. Das Wärmemodell berücksichtigt, neben punktförmiger anthropogener Wärmeeinleitungen aus Kraftwerken, Industrie und Kläranlagen (W Ein ), vor allem den Wärmeaustausch mit der Atmosphäre (siehe Abbildung unten: vereinfachter Wärmehaushalt). Es exisitieren aktuell Wärmemodelle für die Wassertemperaturvorhersagen für Südhessen (das hessische Rhein und Maingebiet) und den Rhein . Aktuelle Vorhersagen für Südhessen Nähere Informationen über das Wasserhaushalts- und Wärmemodell für das hessische Rhein- und Maingebiet (Südhessen) haben wir für Sie zusammengestellt. Mehr Aktuelle Vorhersagen für den Rhein Nähere Informationen über das Wärmemodell Rhein haben wir für Sie zusammengestellt. Mehr Komponenten des Wärmehaushalts: R K - kurzwellige Strahlungsbilanz setzt sich aus der Globalstrahlung abzüglich eines an der Wasseroberfläche reflektierten Anteils zusammen R L - langwellige Strahlungsbilanz beinhaltet die atmosphärische Gegenstrahlung (aus Gasen, Aerosolen und Wolken) und die aus dem Wasserkörper ausgehende Wärmstrahlung H L - latenter Wärmestrom ist der Energietransport durch Wasserdampf auf Grundlage von Verdunstung und Kondensation H F - fühlbare Wärmestrom resultiert aus dem direkten Wärmeaustausch an der Grenzschicht Luft-Wasser H SED - Wärmespeicherung in der Gewässersohle und der Austausch mit dem Wasser (vor allem bei kleineren, meist flachen Gewässern) Matthias Kremer Tel.: 0611-6939 105 aktuelle Wassertemperaturen Aktuelle Vorhersagen für den Rhein Aktuelle Vorhersagen für Südhessen

LfU-Bericht: Nährstoffliche Belastungen in Fließgewässern

LfU-Bericht: Nährstoffliche Belastungen in Fließgewässern Der aktuelle LfU-Bericht beschreibt und analysiert den Einfluss der nährstofflichen Belastungen auf die Fischfauna in rheinland-pfälzischen Fließgewässern. Zum LfU-Bericht: Nährstoffliche Belastungen in Fließgewässern und deren Einfluss auf die Fischfauna in Rheinland-Pfalz Die wesentlichen Ergebnisse: Nährstoffe haben für die Ökologie von Fischen und ihren Lebensgemeinschaften eine grundlegende Bedeutung. In dieser Studie wird der Frage nachgegangen, welchen Einfluss Nährstoffe auf das Vorkommen von Fischen und den fischökologischen Zustand in Fließgewässern in Rheinland-Pfalz haben. Hierzu werden die Daten aus dem biologi-schen und chemischen Monitoring von 2017 bis 2019 statistisch ausgewertet. Die Daten umfassen (i) die allgemein physikalisch-chemischen Parametern, (ii) die Saprobienindices des Makrozoobenthos und (iii) die fischbiologischen Erhebungen. Nährstoffliche Belastungen in Fließgewässern sind in Rheinland-Pfalz noch verbreitet. Schwerpunkte der Belastung liegen großräumig in der Oberrheinebene und betreffen andernorts einzelne Gewässer, wie Nothbach, Lauter und Wiesbach. Neben den Dauerbelastungen sind in einigen Bächen auch spitzenartige Belastungen auffällig. In Bächen erweisen sich insbesondere hohe Konzentrationen von Ammonium und Nitrit als beeinträchtigend für die Fischfauna aus. In der Unteren Forellenregion und der Äschenregion beeinflusst zudem die organische Belastung bzw. die Saprobie den fisch-ökologischen Zustand. Die regulativen Grenzwerte für die Saprobie sind deutlich zu hoch, um die Belastung in der Forellenregion abzubilden. Die Vielfalt der stofflichen Belastungen ist in der Äschenregion am höchsten. Die absoluten Mengen der stofflichen Belastungen sind in der Cyprinidenregion am höchsten, da diese überwiegend in der Oberrheinebene vorkommt. Erhöhte Konzentrationen von Gesamtphosphat und Orthophosphat sind weit verbreitet. Der Einfluss von hohen Phosphatgehalten auf die fischbiologische Zustandsbewertung ist deswegen schwierig statistisch nachweisbar. Die realisierte Eutrophierung aufgrund hoher Phosphorkonzentrationen betrifft in der Barbenregion die meisten Gewässer, sie kann jedoch bereits auch in der Forellen- und Äschenregion im Einzelfall den fischökologischen Zustand beeinflussen. Die Besiedlungsdichten von Fischarten korrelieren mit Nährstoffgehalten und der Intensität des Stoffumsatzes. Die Dichten der Bachforelle, nachfolgend von der Groppe sind von allen Fischarten am häufigsten und ausschließlich negativ mit Nährstoffgehalten korreliert. Die Dichten beider Arten korrelieren auch negativ mit der Saprobie, während die Dichten von Döbel, Gründling, Dreistachliger Stichling, Bachschmerle und Plötze positiv mit der Saprobie korrelieren. Zudem steigen die Dichten vom Döbel mit der Eutrophierung und die vom Dreistachligen Stichling mit den Konzentrationen von Ammonium und Nitrit. Die Gesamtbewertung des ökologischen Zustands der Wasserkörper korrespondiert mit der Landnutzung. Die Flächenanteile von Acker, Siedlungen und Sonderkulturen korrelieren mit den stofflichen Belastungen. Ab einem Ackeranteil von über 20 % wird in der oberen Forellenregion ein guter Zustand unwahrscheinlich. Der Einfluss der Flächennutzung auf Stoffkonzentrationen variiert je nach Fischregion bzw. Gewässergröße und Lage. Die Stoffeinträge aus Punktquellen scheinen in der Unteren Forellenregion am einflussreichsten für den fischökologischen Zustand zu sein. Die hier ermittelten Wirkungen von Stoffen auf die Fischfauna belegen die Notwendigkeit einer guten Wasserqualität für die Zielerreichung eines guten fischökologischen Zustands. Eine geringe nährstoffliche Belastung ist insbesondere für gute Bestände der Bachforelle und der Groppe wichtig bzw. der Zielerreichung in Forellen- und Äschenbächen in Rheinland-Pfalz. Fallstudie Nister: Die stoffliche Belastung an der Unteren Nister ist seit 1990 deutlich geringer geworden. Dennoch entwickeln sich im Frühjahr massenhaft fädige Algen auf der Sohle. Die Fischfauna hat sich u.a. durch eine deutliche Zunahme der Elritze sowie durch die Abnahmen von Aal und Äsche sowie auch anderer Arten wie der Nase verändert. Das Ablussregime hat sich ab den 1990-Jahren und noch verstärkt seit 2008 dramatisch verändert, mit erheblich geringeren Abflüssen, insbesondere von April bis September. Die jahreszeitlichen Beziehungen von Orthophosphat zu Wassertemperatur und Abfluss weisen darauf hin, dass die starke Zunahme der Konzentration von Orthophosphat im Frühjahr wahrscheinlich grundlegend für die Eutrophierungsprozesse ist. Schutzmaßnahmen zur Verminderung von Nährstoffeinträgen sind äußerst wichtig. Zu diesen zählen Gewässerrandstreifen bei belastenden diffusen Einträgen. Wirksame Randstreifen erstrecken sich über längere Fließstrecken, sind zusammenhängend, dauerhaft angelegt, funktional strukturiert und hinreichend breit. Für den Stoffeintrag aus Kläranlagen an Bächen ist eine Immissionsbetrachtung erforderlich, die sich auf einen ökologisch relevanten Bemessungsabfluss bezieht. Dieser berücksichtigt die aktuellen klimatischen Veränderungen.

Die Barbe ( Barbus barbus ) - ein Leitfisch mit Wandergelüsten

Ein rüsselartiges Maul und vier Bartfäden, dazu ein fast drehrunder Körper: so sieht die Barbe aus. Die Fischbiologen haben nach ihr eine ganze Flussregion benannt, die Barbenregion. Barbus barbus bevorzugt nämlich als typischer Grundfisch die abwechslungsreichen mittleren Regionen großer und kleinerer Flüsse, wo das Wasser noch strömt und der Untergrund steinig bis sandig ist. In einem vom Menschen veränderten Gewässer sind solche reich strukturierten Flussbetten mit ruhigeren und stärker durchströmten Zonen aber kaum noch zu finden. Wie können wir dieser Art helfen? Zum Verhängnis wurde der Barbe, dass sie zum Ablaichen ihrer – übrigens giftigen – Eier auf flache, kiesige Stellen angewiesen ist. Diese finden sich vor allem in den Oberläufen der Flüsse. So schwimmt die Barbe zum Ablaichen im Frühjahr oft viele Kilometer flussaufwärts. Wenn sich ihr aber in unseren ausgebauten Flüssen Staustufen in den Weg stellen, steht es schlecht um den Nachwuchs – die Barbenpopulationen in den betreffenden Fließgewässern werden dadurch deutlich geschwächt. Daher kann man dieser Fischart am besten helfen, wenn man die Flüsse durch Fischtreppen und ähnliche Einrichtungen wieder durchgängig, also durchwanderbar macht. Und natürlich schnell fließende Strecken mit Kies- und Sandgrund erhält. Zum Schutz der Barben wurde in den vergangenen Jahren eine ganze Reihe von Maßnahmen mit durchaus messbarem Erfolg umgesetzt. So gelang es beispielsweise an der Würm, durch die Restaurierung des Gewässers und die Umsetzung von Tieren aus der Nagold in die Würm dort wieder eine stabile Barbenpopulation zu etablieren. Auch an vielen weiteren Fließgewässern im Land sind derzeit Maßnahmen im Gange, um Wanderungshindernisse zu beseitigen. Möchten Sie aktiv werden für die Barbe? Am besten können Sie der Barbe und anderen Fischen helfen, wenn Sie sich aktiv für durchgängige Flüsse einsetzen. Und wenn noch mehr größere und kleinere Flüsse naturnah und unreguliert dahinfließen dürften, dann würde dies vielerorts auch den Barbenbeständen helfen. - zurück zur Übersicht der Fische-Artensteckbriefe -

Lebensraum Flüsse und Bäche

Der Unterschied zwischen Bach und Fluss ist fließend: Wenn sich die Uferbäume nicht mehr über das Gewässer hinweg berühren, spricht man von einem Fluss. Die Biologen teilen die Fließgewässer nach den Fischarten ein, die in bestimmten Abschnitten vorkommen: In Baden-Württemberg interessant sind die Forellenregion (Bachforelle), die Äschenregion (Äsche), die Barbenregion (Barbe) sowie die Brachsenregion (Brachse). Fließgewässer sind von Natur aus sehr dynamische Lebensräume, ihre Ufer können nach jedem Hochwasser anders aussehen. Steilufer brechen ab, Auflandungen erfolgen und aus dem überschwemmten Umland wird Material eingebracht. Doch der Ausbau der Fließgewässer durch den Menschen hat die Situation deutlich verändert: Das Flussbett ist oft in Mauern gezwängt, Wehre, Staustufen und andere quer zur Fließrichtung errichtete Bauten machen es den Tieren schwer, im Fluss zu wandern. Durch Einleitungen von Abwässern oder Abschwemmungen aus Wiesen und Äckern nimmt die Qualität des Gewässers deutlich ab. An Flüssen, die in Ruhe gelassen werden, entstehen Auwälder. Nicht begradigte Fließgewässer mit anschließendem Auwald und zahlreichen Seitengewässern oder Altarmen sind allerdings sehr selten geworden. Deshalb sind zahlreiche Tiere und Pflanzen, die ihren Lebensraum im und am Fliessgewässer haben, gefährdet. In diesem Lebensraum können folgende Arten des 111-Artenkorbes vorkommen: Säugetiere: Alpenspitzmaus, Biber Fische: Äsche, Atlantischer Lachs, Bachneunauge, Barbe, Nase, Steinbeißer, Streber, Groppe, Bitterling Vögel: Eisvogel, Flussregenpfeifer, Uferschwalbe Weichtiere: Kleine Flussmuschel Wildbienen: Blauschillernde Sandbiene Heuschrecken: Plumpschrecke, Wanstschrecke Libellen: Kleiner Blaupfeil, Kleine Zangenlibelle - Zurück zur Ausgangsseite -

Fischbestandserhebungen in bayerischen Fliessgewaessern mit Kormoranpraesenz

Das Projekt "Fischbestandserhebungen in bayerischen Fliessgewaessern mit Kormoranpraesenz" wird vom Umweltbundesamt gefördert und von Bayerische Landesanstalt für Fischerei durchgeführt. Ziel: Beurteilung des Einflusses vom Kormoran auf die Fischbestaende in ausgewaehlten Fliessgewaessern. Die Untersuchungen dienen als Entscheidungsgrundlagen fuer die Formulierung einer Verordnung zur letalen Vergraemung von Kormoranen an natuerlichen und kuenstlichen Gewaessern. Aufgrund der starken Zunahme der Kormoranpopulation in Europa ist die Zahl der ueberwinternden Voegel in Bayern in den vergangenen 10 Jahren ebenfalls gestiegen. Insbesondere in Fliessgewaessern der Forellen- und Aeschenregion, aber inzwischen auch in der Barben- und Brachsenregion, sind zum Teil erhebliche Einfluesse des Kormorans auf bestimmte Fischarten erkennbar. Vor allem die Aeschenbestaende sind von Kormoranen stark dezimiert worden, so dass sich diese Fischart in vielen Fliessgewaessern nicht mehr aus eigener Kraft erholen kann.

Geobiologische Interaktionen zwischen Hydrothermalfluiden und symbiotischen Primärproduzenten an Spreizungsachsen

Das Projekt "Geobiologische Interaktionen zwischen Hydrothermalfluiden und symbiotischen Primärproduzenten an Spreizungsachsen" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für marine Mikrobiologie durchgeführt. In den letzten 2 Jahren des SPP 1144 werden wir unsere Untersuchungen an endosymbiontischen Bakterien in Evertebraten, einer der wichtigsten Gruppen von Primärproduzenten an Hydrothermalquellen des Mittelatlantischen Rückens (MAR), abschließen. In enger Zusammenarbeit mit Geologen und Geochemikern soll der Einfluss von unterschiedlichen geologischen Strukturen und Gradienten in Ventfluiden auf symbiontische Diversität, Biomasse und Aktivität aufgeklärt werden. Diese Forschung wird zu einer der Kernfragen des SPP 1144 beitragen: Welche Wechselwirkungen bestehen zwischen hydrothermalen und biologischen Prozessen? Eine weitere Kernfrage des SPP 1144 ist: Wie beeinflussen Achsenmorphologie und Meeresströmungen die Verbreitung von Ventorganismen entlang der Rückenachse? Biogeographische Analysen der Symbionten von Muscheln und Garnelen sollen zeigen, ob geologische und hydrologische Barrieren zwischen den nördlichen und südlichen Hydrothermalquellen zu einer räumlichen Isolierung von symbiotischen Bakterien führen. Die Ergebnisse dieser Forschung liefern einen wichtigen Beitrag zum Verständnis der Kopplung geologischer und biologischer Prozesse an gemäßigt spreizenden Rückenachsen.

1 2