Die Firma Autoservice Demmler wird in diesem Projekt die Bereiche Elektromobilität, Ladeinfrastruktur und Speichertechnologien begleiten. Bereits seit dem Jahr 2008 befasst sich ASD mit Elektrofahrzeugen. Seit dem Jahr 2014 konnte mit einem Mietpool von derzeit rund 45 rein elektrischen Fahrzeugen ein enormes Wissen auf diesem Gebiet erworben werden. Bei Autoservice Demmler erfolgten bereits wissenschaftliche Erhebungen und Auswertungen im Bereich Elektrofahrzeuge, zu Mobilitätskonzepten und Kundenerfahrungen. Im Projekt soll des Weiteren eine Wärmeauskopplung bei Redox-Flow-Speicher ermöglicht werden. Bevor im zentralen Ansatz ein Redox-Flow-Speicher eingesetzt wird, soll im Vorfeld die Aus-kopplung der Wärme an einem bestehenden Redox-Flow-Speicher getestet und optimiert werden. ASD engagiert sich bereits seit Jahren im Bereich Umweltschutz und regenerativer Energieerzeugung. Auf dem Betriebsgelände befindet sich bereits ein Redox-Flow-Speicher an Welchem in den ersten beiden Jahren des Projektes eine prototypische Entwicklung stattfinden wird. Im Bereich Ladeinfrastruktur ist es Ziel eine Ladesäule zu entwickeln. Für zukünftige Schnellladungen sind verschiedene Systeme am Markt. Die geplante Ladesäule soll alle vereinen und demonstrativ bei Autoservice Demmler umgesetzt werden um einen Rollout für die Modellregion zu ermöglichen. Dazu wird eine spezielle DC-Ladesäule mit Anschlüssen für CCS, Chademo und Meneckes als Prototyp entwickelt. Das umfassende Wissen in den Bereichen Elektromobilität, Ladeinfrastruktur und Speichersystemen macht Autoservice Demmler zum Vorreiter in der Region, und wird maßgeblich zu einer erfolgreichen Umsetzung im Projekt ZED beitragen.
The transition from fossil fuel based transportation to clean electric mobility must be considered one of the crucial steps of decarbonization. In this sense, reducing the import of oil to gain political independence is as important as mitigating global warming due to CO2 emissions according to the international climate goals. Even though the strong projected increase of electric vehicles must be seen as a rather positive development, a number of new related challenges will arise for energy supply companies, grid operators, vehicle and charging station manufacturers and finally the customers. Especially the continuously rising charge power in combination with an increasing supply by volatile sources result in high loads on the grid which may cause instabilities and - in the worst case - even blackouts. Still, the development of fast charging station with 100 kW and more is absolutely necessary to combat range anxiety attributed to EVs. Among experts, the lack of charging infrastructure is considered the biggest threat for electric mobility. In order to avoid a costly grid expansion and still provide a comprehensive network of fast charging stations, new innovative solutions need to be found. Within project FlyGrid a high-performance flywheel energy storage system (FESS) will be integrated in a fully automated fast charging station. Even with only a low voltage distribution grid at hand, high charge power can be reached while at the same time stabilizing the grid. The system is suitable to integrate local renewable sources - for instance PV-modules on a car port - and hence contributes to increase the share of clean energy in the electricity mix. Superior cycle life of the energy storage device, the ability to feed high power back into the grid as well as easy transportability in the form of a mobile 'fast charging box' (for electric construction machinery or similar) are further characteristics of the FlyGrid concept. FlyGrid is a disruptive technology, which can be developed and manufactured in Austria and plans to reach the following top-level goals with high socio-economic impact: - Reduction of charging times of EVs and increase of EV market penetration - Higher customer satisfaction through improved charging network - Avoidance of a costly electric grid expansion - Improved integration of volatile renewables sources for EV propulsion - Improved grid stability and power quality - Portable fast charging solution for zero emission construction equipment or events The versatile, interdisciplinary consortium consisting of two research institutions and nine industry partners, the world's first combination of flywheel energy storage, highly innovative, fully automated EV charging (easelink MATRIX CHARGING) and the integration of local renewables (Secar E-Port) all stress the uniqueness of the project.
Das Projekt umfasst Forschungs- und Entwicklungsarbeiten hinsichtlich eines zukünftigen Lademanagement für Elektrofahrzeuge in Netzen mit Demand Side Management von der Leitwarte aus und Demand Response vom Fahrzeug aus, dargestellt an einer Smart Home-Anwendung auf Basis von induktivem, bidirektionalem Laden mit 11 kW. Die prinzipiell höhere Netzverfügbarkeit von Fahrzeugen mit induktiver Ladetechnik soll in einem Flottenversuch mit sechs Fahrzeugen an verschiedenen Standorten nachgewiesen werden. Über gesteuerte Ladevorgänge soll der Primärregelleistungsmarkt adressiert werden, wobei die Steuerung über eine Ladeleitwarte dafür sorgen soll, dass eine gesicherte Leistung zur Vermarktung bereitgestellt werden kann. Bei den angestrebten hohen Ladeleistungen kommt dem Wärmemanagement, der Fremdkörpererkennung und der gesamten Sicherheitsanalyse eine hohe Bedeutung zu. Weiterhin wird im Projekt die Sicherstellung der Interoperabilität zu aktuellen internationalen Standardisierungsvorschlägen, auch durch die aktive Mitarbeit in Normungsgremien, angestrebt. Im Rahmen des Projektes soll untersucht werden, ob die Mehrkosten des Elektrofahrzeuges durch die Einbindung als Energiespeicher in Smart Home Konzepten und mit Hilfe neuer Geschäftsmodelle kompensiert werden können und in wieweit hierbei die Verwendung einer automatischen Netzanbindung und einer bidirektionalen kontaktlosen Ladetechnologie eine signifikante Rolle spielt. In diesem Fall würde die Elektromobilität für die Nutzer auch wegen der Wirtschaftlichkeit der Elektrofahrzeuge in Kombination mit dem häuslichen Energiemanagement deutlich an Attraktivität gewinnen.
The ASSURED Project proposal addresses the topic GV-08-2017, 'Electrified urban commercial vehicles integration with fast charging infrastructure' of the Green Vehicle work programme. A 39-member consortium from 12 different EU Member States will conduct the work. The overall objectives of ASSURED are: - Analysing the needs of the cities, operators and end-users to derive the requirements and specifications for the next generation of electrically chargeable heavy-duty (HD) vehicles (i.e. buses), medium-duty (MD) trucks and light duty vehicles for operation within an urban environment; - Improving the total cost of ownership (TCO) through better understanding of the impact of fast charging profiles on battery lifetime, sizing, safety, grid reliability and energy- efficiency of the charger-vehicle combination; - Development of next generation modular high-power charging solutions for electrified HD and MD vehicles; - Development of innovative charging management strategies to improve the TCO, the environmental impact, operational cost and the impact on the grid stability from the fleet upscaling point of view; - Demonstration of 6 electrically chargeable HD vehicles (public transport buses), 3 MD trucks (2 refuse collections & 1 delivery truck) and 1 light duty vehicle with automatic fast charging; - Development of interoperable and scalable high power charging solutions among different key European charging solution providers; - Demonstration of energy and cost efficient wireless charging solutions up to 100 kW for an electric light duty vehicle (VAN); - Evaluating the cost, energy efficiency, impact on the grid of the different use cases, noise and environmental impact of the ASSURED solutions; - To actively support the take?up of business cases and exploitation of project results across Europe of the use cases by partner cities (Barcelona, Osnabruck, Goteborg, Brussels, Jaworzno, Munich, Eindhoven, Bayonne, Madrid) and end users.
Begleitend zum Feldversuch elektrisch angetriebener schwerer Nutzfahrzeuge mit der Möglichkeit eines oberleitungsgebundenen Betriebs (hier Oberleitungs-Hybrid-Lkw bzw. kurz OH-Lkw genannt) soll eine unabhängige wissenschaftliche Studie durchgeführt werden. Fokus dieser Begleitforschung ist die 'Erforschung aller relevanten verkehrs- und energietechnischen, ökologischen und ökonomischen Aspekte, die für einen späteren Ausbau des Systems relevant sind.' Das Fraunhofer IWES wird hierbei insbesondere die Implikationen von Ausbauszenarien für die Jahre 2030 und 2050, sowie mögliche Netzverstärkungsmaßnahmen untersuchen und die zusätzlichen Auswirkungen von OH-LKW Autobahnen auf die umgebenden Verteilnetze untersuchen. Weiterhin stehen unter anderem die netztechnischen Herausforderungen, die sich durch Schnellladung der Traktionsbatterien an der Oberleitung während der Fahrt ergeben, sowie die Auswirkungen der zusätzlichen Stromnachfrage auf das Energiesystem und den Ausbau erneuerbarer Energieanlagen im Fokus. Das Fraunhofer IWES analysiert die erarbeiteten Einführungspfade für das Oberleitungssystem auf ihre Wechselwirkungen mit der Stromerzeugung sowie auf ihre (verteil-)netztechnischen Auswirkungen hin. Entsprechend liegt der Fokus auf der Bearbeitung der Arbeitspakete 'Lastgänge einzelner Oberleitungsfahrzeuge' (AP 2.6), 'Implikationen der OH-Technologie für die Verteilnetze' (AP 2.7) und 'Auswirkungen der OH-Technologie auf das Energiesystem' (AP 2.8). Darüberhinaus wird das Fraunhofe IWES aber auch andere Fragestellungen des Vorhabens unterstützend begleiten und seine Expertise einbringen.
In der Standardisierung induktiver Ladesysteme werden unterschiedliche Systemvorschläge als interoperable Schnittstelle diskutiert. Der Druck zur Festlegung einer solchen Schnittstelle kommt dabei nicht nur aus dem regulatorischen Umfeld, sondern auch seitens der Hersteller, die interoperable Systeme ab 2020 im Markt anbieten wollen. STILLE dient zur hersteller- und leistungsklassenübergreifende Standardisierungsunterstützung für induktive Ladesysteme und verfolgt das Ziel, notwendige Erkenntnisse zur Gestaltung einer interoperablen Schnittstelle zu gewinnen. Dabei werden alle interoperabilitätsrelevanten Parameter und Funktionen durch Aufbau und Tests bestehender System- und Technologieansätze praktisch validiert. Dies umfasst im Groben die Energieübertragung, Kommunikations-, Positionierungs- und Sicherheitssysteme. Zur Evaluierung der Interoperabilität der Energieübertragung werden verschiedene Infrastruktur- und Fahrzeugschnittstellen aufgebaut und - unterstützt von Simulationen - mit- und gegeneinander getestet. Damit zusammenhängende Anforderungen an elektromagnetische Felder (EMV oder EMF), werden ebenfalls innerhalb der Testreihen berücksichtigt. Das Kernziel im Bereich der Energieübertragung liegt in der Beschreibung der interoperablen Energieschnittstelle für derzeit betrachtete Leistungsklassen für PKW (3,7 kW - 7,7 kW - 11 kW - 22 kW). Im Gegensatz zur Energieübertragung lassen sich Kommunikations- und Positionierungssysteme unabhängig von der Übertragungsleistung einheitlich gestalten. Insbesondere wird untersucht, wie sich die beiden Funktionen bestmöglich miteinander vereinen lassen. Wiederum besteht der Ansatz von STILLE im Aufbau und Testen von Technologievarianten, mit der übergeordneten Zielsetzung der Erarbeitung einer gemeinsamen Empfehlung für standardisierte Technologien und Abläufe. Die gewonnenen Erkenntnisse werden in nationale und internationale Standardisierungsgremien eingespeist und dienen dort als technische Entscheidungsgrundlage. Die Massenmarkttauglichkeit wird dabei innerhalb STILLE durch die Untersuchung von Anwendungs- und Geschäftsmodellen für induktives Laden sowie durch die Ableitung von Anforderungen an den Aufbau einer europäische Test- und Zertifizierungsplattform gestützt. Mit diesem Gesamtpaket leistet STILLE einen wichtigen Beitrag zur Entwicklung und Implementierung eines internationalen Standards für das induktive Laden. Dadurch wird die kabellose Technologie im Bereich Elektromobilität für den Massenmarkt befähigt und kann somit zu einem Treiber der Elektromobilität werden. Durch die Beteiligung führender deutscher Unternehmen aus der Automobil- und Zuliefererindustrie sowie Forschungseinrichtungen, kann zudem die Technologieführerschaft der deutschen Wirtschaft im Bereich alternativer Antriebstechnologien weiter ausgebaut werden. Mit der Beteiligung internationaler Partner erhält das Projektvorhaben zudem die notwendige internationale Strahlkraft. STILLE wird durch das BMWi gefördert.
Für die nächsten Jahre wird von den Automobilherstellern der Einbau von Traktionsbatterien (ca.100kWh) angekündigt, die Reichweiten von bis zu 500km ermöglichen. Ladesäulen mit heutiger Ladeleistung (50kW) benötigen bei dieser Batteriegröße ca. 1,6 h, um 80% der Batteriekapazität, ausreichend für 400km Reichweite, nachzuladen. Das Ziel des Gesamtprojekts ist, die Ladedauer für 80% Vollladung auf eine 1/4 h zu reduzieren. Ziel des Teilprojektes ist die Entwicklung und prototypische Umsetzung modularer Leistungselektronik für die Umsetzung von Ladesäulen mit Leistung von über 300 kW, unter Berücksichtigung der Anforderungen der Schnittstelle zum Elektrofahrzeug.
Für die nächsten Jahre wird von den Automobilherstellern der Einbau von Traktionsbatterien (ca.100kWh) angekündigt, die Reichweiten von bis zu 500km ermöglichen. Ladesäulen mit heutiger Ladeleistung (50kW) benötigen bei dieser Batteriegröße ca. 1,6 h, um 80% der Batteriekapazität, ausreichend für 400km Reichweite, nachzuladen. Das Ziel des Gesamtprojekts ist, die Ladedauer für 80% Vollladung auf eine 1/4 h zu reduzieren. Im Gesamtverbund wird sich das Scienlab engineering center hauptsächlich mit den Teilprojekten 1,2,3,5+6 beschäftigen und zusätzlicher Mitarbeit in Teilprojekt 4. Dabei stehen die folgende Schwerpunkte im Fokus: 1) Entwicklung und Systemspezifizierung eines geeigneten BMS das einen Lademanager integriert hat und mit seiner Leistungsfähigkeit den Anforderungen an Ladeleistung, thermische Entwicklung und Sicherheit im angestrebten Anwendungsfall ausgelegt ist. 2) Erarbeitung eines zukunftsfähigen Gesamtkonzeptes für DC Ladeinfrastruktur welche technologisch und gesamtwirtschaftlich möglichst hohe Effizienzen bietet.
Der Forschungscampus Mobilty2Grid liefert innovative Konzepte und Lösungen für Energiewende und Elektromobilität in vernetzten urbanen Arealen. Insbesondere die Einbindung der Elektromobilität in Mikro Smart-Grids steht im Vordergrunddes Arbeitspakets (AP) in das das Fraunhofer ISE seine Kompetenzen einbringt. Im AP 2.2.3 wird eine praxistaugliche Ausbaustrategie für Fahrzeugflotten-Areale entwickelt. Hierzu werden Systemarchitekturen und auch die unterschiedlichen technologischen Stränge der möglichen Ladetechniken systemisch verglichen (z.B. auch bidirektional und induktiv). Die technischen Voraussetzungen sowie die entstehenden Mehrwerte die sich durch die Einbindung der unterschiedlichen Generationen an Ladeinfrastruktur ergeben werden untersucht. Darauf aufbauend findet im AP eine reale Umsetzung der markttechnischen Einbindung eines Teils der Ladeinfrastruktur statt. Erprobung und Demonstration auf dem EUREF-Campus schließen sich an und schaffen erstmals die Basis für eine zukünftige Einpreisung von Smart-Grid-Services.
Das Fraunhofer IEE ist in diesem Projekt hauptverantwortlich für die Entwicklung der Flexibilitäts-, Lade- und Energiemanagementstrategien. Diese bilden den Mobilitätsbedarf des Kunden, den Hotellastbedarf und den Flexibilitätsbedarf in Richtung Netzbetreiber und Energieversorgungsunternehmen optimiert ab. Damit einher geht die Entwicklung eines Planungstool zur optimalen Investition in die Ladeinfrastruktur von Hotels. Ein solches Tool erlaubt es, den E-Mobilitätsbedarf anwendungsfallgerecht zu unterstützen und bietet eine Möglichkeit, neue Anwendungsfälle simulativ zu beurteilen.
Origin | Count |
---|---|
Bund | 789 |
Type | Count |
---|---|
Förderprogramm | 789 |
License | Count |
---|---|
offen | 789 |
Language | Count |
---|---|
Deutsch | 763 |
Englisch | 53 |
Resource type | Count |
---|---|
Keine | 171 |
Webseite | 618 |
Topic | Count |
---|---|
Boden | 353 |
Lebewesen & Lebensräume | 348 |
Luft | 758 |
Mensch & Umwelt | 789 |
Wasser | 136 |
Weitere | 789 |