API src

Found 2426 results.

Related terms

Dieses Vorhaben wird im Rahmen des Programms 'Nachhaltig im Beruf' gefördert

Katalytisch aktive Baustoffe zum Abbau von Schadstoffen in städtischen Atmosphären

Mehr als 90 Prozent der anthropogen emittierten Stickstoffoxide entstehen als Nebenprodukte von Verbrennungsvorgängen. Verursacher sind Kfz-Motoren, Feuerungsanlagen der Kraftwerke, Industriebetriebe und Hausheizungen. Der Verkehr ist die Emittentengruppe mit den höchsten Anteilen an Stickstoffoxiden (NOX). Trotz der in den vergangenen Jahren verstärkten Anstrengungen, die NOX-Emissionen zu reduzieren (Kfz-Katalysatoren, Rauchgasentstickungsanlagen) führen hohe Verkehrsdichten in Ballungsräumen und oftmalige Inversionswetterlagen zu erheblichen NOX-Belastungen. So kommt es, dass in Innenstadtbereichen trotz der erwähnten Emissionsminderungsmaßnahmen, aufgrund des ständig steigenden Verkehrsaufkommens, Grenz- bzw. Richtwerte überschritten werden. Ein neues Verfahren zur Minimierung der Immissionen basiert darauf, vorhandene Gebäudeoberflächen (z. B. Dächer, Häuserfassaden, Verglasungen) zur Reduktion von Stickoxiden in städtischen Atmosphären zu nutzen. Hierzu sollen die katalytischen bzw. photokatalytischen Eigenschaften bestimmter Substanzen gezielt baulich eingesetzt werden. Der katalytische Abbau von NOX in Rauchgasentstickungsanlagen ist ein umfangreich erforschtes Gebiet der technischen Chemie. Erst oberhalb Temperaturen von 250 - 400 Grad C erreichen die Katalysatoren Umsatzgeschwindigkeiten, die für die technische Nutzung brauchbar sind. In Großstädten stehen ausgedehnte Gebäudeflächen zur Verfügung. Würde ein Teil dieser Flächen aus katalytisch aktiver Bausubstanz bestehen, so wären hier auch langsame, auf niedrigem Temperaturniveau (Sommeraußentemperatur) stattfindende katalytische Reaktionen interessant, da die großen Flächen den Nachteil geringer Umsätze kompensieren würden. Diese neue Gruppe von funktionellen Baustoffen für den passiven katalytischen Schadstoffabbau werden als p-Baustoffe (Protective Integrated Building Materials) bezeichnet. Erste Voruntersuchungen mit beschichteten Dachsteinen waren erfolgreich.

Timber Earth Slab

Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.

Schallschutz im Hochbau

Aktualisierung der für Lärmschutzwände bedeutsamen Regelwerke in den ZTV-Lsw

Die ZTV-Lsw 88 werden derzeit überarbeitet und dem Stand der Technik angepasst. Anhand dieser ZTV und des Entwurfs einer neuen ZTV-Lsw sind alle Zitate und Verweise auf andere Regelwerke zu aktualisieren. Dabei ist in jedem Fall zu prüfen, a) ob der Verweis noch aktuell ist und ggf. überarbeitet werden muss und b) ob es erforderlich ist, neue zusätzliche Verweise aufzunehmen, die bisher nicht in den ZTV-Lsw 88 oder dessen Neuentwurf genannt sind.

Sedimentbewegungen in der Deutschen Bucht

Zur Halbzeit eines BAW-Forschungsprojektes zum 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht' werden erste Ergebnisse sichtbar. Transportprozesse im Wandel der Zeitläufe: Wie werden sich die Watten und Vorländer der deutschen Nordseeküste anpassen, sollte in Folge des Klimawandels der Meeresspiegel steigen? Eine Antwort auf diese Frage ist nicht nur für die Sicherheit der Seedeiche bedeutsam, sondern auch für die Zufahrten zu den Seehäfen. Einerseits beeinflusst das Flachwasser im Ästuarbereich maßgebend das Tide- und Sedimentregime in den Tideflüssen und hat somit Auswirkungen auf die zukünftige Unterhaltung der Seehafenzufahrten. Zum anderen hat sich gezeigt, dass in einer Betrachtung über Jahrzehnte hinweg die kleinräumigen Transportprozesse in der Deutschen Bucht und in den Außenbereichen der Ästuare auch durch die Transportprozesse, die in der gesamten Nordsee stattfinden, mitgeprägt werden. Die Dimension dieser weiträumigen Transportprozesse in der Nordsee wird in der Satellitenaufnahme der oberflächennahen Ausbreitung der Schwebstofffahnen aus den Ästuarmündungen deutlich (Bild 1). Allerdings entzieht sich dieses Phänomen noch weitgehend der fachwissenschaftlichen Betrachtung, denn über die tatsächlichen Transportprozesse in der Nordsee, zumal in der Deutschen Bucht, ist wenig bekannt: Es fehlen zum Beispiel grundlegende, flächendeckende Informationen über das anstehende Material an der Gewässersohle, über den Bodenaufbau oder über die relevanten Kräfte, die den Transport antreiben, wie Wind und Seegang. Und schließlich fehlen die geeigneten Werkzeuge, um die komplexen Transportprozesse berechnen zu können. BAW hat Federführung bei Forschungsprojekt: Im Rahmen eines im Wettbewerb ausgeschriebenen Forschungsschwerpunktes des Kuratoriums für Forschung im Küsteningenieurwesen (KFKI) konnte sich die BAW mit einem Forschungsantrag zum Thema 'Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der deutschen Bucht (AUFMOD)' durchsetzen. An dem Projekt unter Federführung der BAW beteiligen sich weitere neun Kooperationspartner. Gestartet Ende 2009, läuft die Förderung zunächst bis 2012 (siehe: www.kfki.de/prj-aufmod/de).

Timber Earth Slab, Teilvorhaben 5: Planung und Implementierung von baulichen Anwendungen

Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.

Eignung von ziegelreichen Recycling-Baustoffen für Tragschichten ohne Bindemittel

Der Anteil an Ziegel in einem RC-Baustoff ist nach den TL RC-ToB 95 begrenzt. Die Trennung in hart- und weichgebrannte Ziegel - auch in Mischung mit weiteren Baustoffkomponenten z. B. Mörtel und Putz - sowie auch die Höhe der Grenzwerte sind noch nicht ausreichend abgesichert. Mit dieser Forschungsarbeit soll geklärt werden, inwieweit sich höhere Anteile an Ziegelbruch auf die Qualität einer ToB auswirken. In Laborversuchen werden getrennt die Eigenschaften der hart- und weichgebrannten Ziegel und auch des Mörtels und Putzes im Hinblick auf den Frostwiderstand, die Schlagfestigkeit sowie die Porosität ermittelt. In RC-Gemischen werden die Auswirkungen unterschiedlicher Anteile der Ziegel bzw. des Mörtel/Putzes, insbesondere die Frostempfindlichkeit, das Tragverhalten sowie die Wasserdurchlässigkeit untersucht. Im Rahmen der Arbeit sollen auch die bisherigen praktischen Erfahrungen mit ziegelreichen RC-Baustoffen erfasst werden. Als Ergebnis sind ggf. Vorschläge für modifizierte Anforderungen an die stoffliche Zusammenstellung für RC-Baustoffe zu erarbeiten.

Timber Earth Slab, Teilvorhaben 2: Implementierung und Industrietransfer des Systems im industriellen Holzbau, Systementwicklung inkl. Anschlüssen und Stößen

Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden.

Timber Earth Slab, Teilvorhaben 4: Industrielle Produktion des Misch-, Transport-, und Gießverfahrens, Trocknung, Transport

Im Rahmen des Forschungsvorhabens Timber Earth Slab (T.E.S.) schließen sich Branchenexperten aus der Industrie aus den Bereichen Holzbau und Lehmbau mit Professuren der TU München aus den Disziplinen Digitaler Fertigung, Holzbau und Baukonstruktion, Klimadesign und Architektur zusammen, um im mehrgeschossigen Holzbau einen grundlegenden Beitrag hin zum CO2-neutralen Bauen anzustoßen: T.E.S., eine industriell gefertigte Net-Zero Holz-Lehm-Decke. Geschossdecken sind eine zentrale Komponente für das Erreichen der CO2-Neutralität im mehrgeschossigen Holzbau mit sehr hohen Anforderungen an den Brandschutz, thermischer Masse und Schallschutz. T.E.S. kombiniert computergestütztes Design, robotisch gestützte Fertigung und Materialtechnologie, um eine neue innovative Lösung für die industrielle Fertigung eines ressourceneffizienten und funktionsintegrierten Deckensystems aus Holz und Lehm zu erforschen, das alle strukturellen und bautechnischen Anforderungen für den mehrgeschossigen Holzbau erfüllt, außerdem CO2-neutral hergestellt werden kann und vollständig rezyklierbar ist. Mithilfe der Materialtechnologie des ETH-Spinoffs Oxara, mit der Lehm mit geringem Wasseranteil fließfähig gemacht und vergossen werden kann, und robotischer Fertigungstechnologie, die die maßgeschneiderte Herstellung einer auf den Fließlehm abgestimmten feingliedrigen Holzkonstruktion ermöglicht, verspricht T.E.S. ein hybrides Deckensystem, welches die Stärken beider Materialien ideal kombinieren lässt: Durch die guten statischen Eigenschaften von Holz in Kombination mit den positiven Eigenschaften des Lehms hinsichtlich thermischer Masse, der Möglichkeiten zur thermischen Aktivierung, Brandschutz und Schallschutz können mit T.E.S. Nachhaltigkeit, Performativität und Kosteneffizienz in einer Deckenkonstruktion zusammengebracht werden

1 2 3 4 5241 242 243