Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.
Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
Der schnelle Fortschritt der elektronischen Geräte erhöht die Nachfrage nach verbesserten Li-Ionen Batterien. Kommerziell erhältliche Li-Zellen nutzen meist Lithiumkobaltoxid für die positive Elektrode. Doch gerade dieses Material ist ein Hindernis für eine weitere Optimierung, insbesondere für eine Kostensenkung. Vor allem für größere Anwendungen wie Hybrid- oder Elektrofahrzeuge müssen alternative Materialen erforscht werden, die billiger, sicherer und umweltverträglicher sind. Daher wird im ISEA derzeit ein neues Forschungsprojekt ins Leben gerufen und die dafür benötigte Infrastruktur geschaffen. Die Forschung wird sich auf die Untersuchung geeigneter Übergangsmetalloxide und Polyanionen konzentrieren, die besonders gut zur Einlagerung von Li-Ionen geeignet sind. Es werden neue Herstellungsverfahren unter Verwendung wässriger Precurser-Substanzen untersucht, die Verbindungen mit überlegenen Eigenschaften erzeugen und außerdem leicht an eine Massenproduktion angepasst werden können. Ziel der Arbeiten ist, preisgünstiges Elektrodenmaterial zu entwickeln, das eine spezifische Energie von über 200 Wh/kg und eine Leistungsdichte von 400 W/kg aufweist. Außerdem werden Arbeiten im Bereich der physikalisch-chemischen Charakterisierung der neuen Materialien stattfinden sowie elektrochemische Analysen der gesamten Zellen- und Batteriesysteme durchgeführt. Das elektrodynamische Verhalten der neuen Zellen wird u. a. mit Hilfe der elektrochemischen Impedanzspektroskopie analysiert, um präzise und zuverlässige Algorithmen für ein späteres Batteriemonitoring im realen Betrieb zu finden.
Methoden des terrestrischen Carbon Dioxide Removal (tCDR) wie Aufforstung und Biomasseplantagen werden zuweilen als effektive, 'grüne' und sichere Varianten des Klimaengineering (CE) verstanden wegen ihrer Möglichkeit, die natürliche CO2-Aufnahme durch die Biosphäre zu erhöhen, und ihrer denkbaren ökonomischen Tragfähigkeit. Erkenntnisse aus der ersten Phase des CE-LAND-Projekts legen indes nahe, dass tCDR aufgrund schwieriger erdsystemischer und ethischer Fragen ebenso kontrovers wie andere CE-Methoden ist. CO2-Budgetierungen und rein ökonomische Bewertungen sind daher um profunde Analysen der natürlichen Begrenzungen, der Auswirkungen auf das Erdsystem mit damit verbundenen Unsicherheiten, der Tradeoffs mit anderen Land- und Wassernutzungen und der weitreichenden ethischen Implikationen von tCDR-Maßnahmen zu ergänzen. Analysen hypothetischer Szenarien der ersten Projektphase zeigen, dass effektives tCDR die Umwidmung großer Flächen voraussetzt, womit schwierige Abwägungsprozesse mit anderen Landnutzungen verbunden wären. Darüber hinaus zeigt sich, dass signifikante Nebenwirkungen im Klimasystem (außer der bezweckten Senkung der Weltmitteltemperatur) und in terrestrischen biogeochemischen Kreisläufen aufträten. CE-LAND+ bietet eine tiefergehende quantitative, räumlich explizite Evaluierung der nicht-ökonomischen Kosten einer Biosphärentransformation für tCDR. Potentielle Tradeoffs und Impakts wie auch die systematische Untersuchung von Unsicherheiten in ihrer Abschätzung werden mit zwei Vegetationsmodellen, einem Erdsystemmodell und, neu im Projekt, dynamischen Biodiversitätsmodellen analysiert. Konkret wird CE-LAND+ bisher kaum bilanzierte Tradeoffs untersuchen: einerseits zwischen der Maximierung der Flächennutzung für tCDR bzw. Biodiversitätsschutz, andererseits zwischen der Maximierung der Süßwasserverfügbarkeit für tCDR bzw. Nahrungsmittelproduktion sowie Flussökosysteme. Auch werden die (in)direkten Auswirkungen veränderten Klimas und tCDR-bedingter Landnutzungsänderungen auf Wasserknappheit (mit diversen Metriken und unter Annahme verschiedener Varianten des Wassermanagements) und Biodiversität quantifiziert. Die Tradeoffs und Impakts werden im Kontext von neben der Bekämpfung des Klimawandels formulierten globalen Nachhaltigkeitszielen - Biodiversitätsschutz, Wasser- und Ernährungssicherheit interpretiert - was sonst nicht im Schwerpunktprogramm vermittelt wird. Ferner wird das Projekt zu besserem Verständnis und besserer Quantifizierung von Unsicherheiten von tCDR-Effekten unter zukünftigem Klima beitragen. Hierzu untersucht es modellstrukturbedingte Unterschiede, Wachstum und Mortalität von tCDR-Pflanzungen unter wärmeren und CO2-reicheren Bedingungen und Wechselwirkungen zwischen tCDR-bezogenen Landnutzungsaktivitäten und Klima. Schließlich wird CE-LAND+ in Kooperationen innerhalb des Schwerpunktprogramms und mit einer repräsentativen Auswahl von Szenarien zur Evaluierung tCDR-bedingter Tradeoffs aus umweltethischer Sicht beitragen.
The natural capital of forests consists to a great extend of the forests environmental functions for human well-being, which not only include goods and services (source and sink functions) but also include life-support functions that reflect ecosystem performance (ecosystem functioning). Shifting the management approach from a traditional one to one that is more aware of the ecosystem complexity, the idea of 'ecosystem functioning is appearing to tackle gradual declines of ecosystem functions. Within CBDs framework, the Ecosystem Approach has been introduced on account of the necessity for open decision making with strong links between all stakeholders and the latest scientific knowledge due to uncertainty and unpredictability in nature. The Ecosystem Approach is still in need of further elaboration, even though as a concept Ecosystem Approach has been widely accepted. To aim forest enhancement, this approach has been regarded as the most feasible concept for the study area, the Bengawan Solo River Basin - Java, Indonesia. Therefore the principles and operational guidelines will be used to analyse and evaluate the current forest management in those areas of the Bengawan Solo River Basin, in which ecosystem function is the basis for forest development area. This research focuses on ecological functions of forests at various levels of ecosystem management planning, from the forestry sectors point of view.
Das Edelgasradioisotop 39Ar ist von großem Interesse für die Datierung in Ozeanographie, Glaziologie und Hydrogeologie, da es das einzige Isotop ist, das den wichtigen Altersbereich zwischen ca. 50 und 1000 Jahren abdeckt. Die fundamental neue Messmethode der Atom Trap Trace Analysis (ATTA), welche die 81Kr Datierung zum ersten Mal möglich gemacht hat, besitzt das Potenzial, die Anwendungen von 39Ar zu revolutionieren, indem sie die benötigte Probengröße um einen Faktor 100 bis 1000 reduziert. In einem Vorgängerprojekt haben wir zum ersten Mal gezeigt, dass die Messung von 39Ar an natürlichen Proben mit ATTA möglich ist, allerdings benötigten wir dazu immer noch Tonnen von Wasser. Vor kurzem haben wir anhand von Proben aus ersten Pilotprojekten mit Ozeanwasser und alpinem Eis gezeigt, dass die 39Ar-ATTA (ArTTA) Messung an Proben von ca. 25 L Wasser oder 10 mL Ar oder weniger möglich ist. Dieser Erfolg eröffnet komplett neue Perspektiven für die Anwendung der 39Ar-Datierung, die sehr wertvolle Information ergeben wird, die ansonsten nicht zugänglich wäre. Der Bedarf für solche Analysen, insbesondere im Gebiet der Spurenstoff-Ozeanographie, ist gut etabliert und dokumentiert durch Unterstützungsschreiben von unseren derzeitigen Partnern für ArTTA Anwendungen. Dieser Antrag wird es uns ermöglichen, die weltweit ersten ArTTA Geräte zu bauen, die auf Routinebetrieb mit kleinen Proben ausgelegt sind. Wir streben den Aufbau einer 39Ar-Datierungsplattform an, welche die Anforderungen für die Datierung in den Feldern der Grundwasserforschung, Ozeanographie und Gletscherforschung erfüllt. Um sinnvolle Anwendungen in der Tracerozeanographie zu ermöglichen, wird eine Kapazität von mindestens 200 Proben pro Jahr benötigt. Das neue Gerät für die Forschung wird damit lange angestrebte Anwendungen erlauben, die sonst nicht möglich wären. Basierend auf bisheriger Forschung haben wir einen klaren Plan für den Aufbau einer kompletten Plattform für den Betrieb von ArTTA: Eine neue Probenaufbereitungslinie basierend auf dem Gettern von reaktiven Gasen erlaubt die Abtrennung von bis zu 10 mL reinem Ar aus kleinen (kleiner als 25 L Wasser oder 10 kg Eis) Umweltproben in wenigen Stunden. Diese Proben werden zum ArTTA Gerät transferiert, welches aus zwei Modulen besteht: Das Optik-Modul erzeugt die benötigten Laserfrequenzen und Laserleistung, das Atom-Modul ist der Teil in dem die Atome mit atomoptischen Werkzeugen detektiert werden, die wir im Prototyp aus dem vorherigen Projekt realisiert haben. So weit als möglich wird die Anlage aus zuverlässigen, hochleistungsfähigen kommerziellen Teilen gebaut. Das System wird in einer hochkontrollierten Containerumgebung installiert, was einen modularen Aufbau gewährleistet, der in Zukunft an unterschiedlichen Orten aufgebaut werden kann.
Recent and predicted increases in extremely dry and hot summers emphasise the need for silvicultural approaches to increase the drought tolerance of existing forests in the short-term, before adaptation through species changes may be possible. We aim to investigate whether resistance during droughts, as well as the recovery following drought events (resilience), can be increased by allocating more growing space to individual trees through thinning. Thinning increases access of promoted trees to soil stored water, as long as this is available. However, these trees may also be disadvantaged through a higher transpirational surface, or the increased neighbourhood competition by ground vegetation. To assess whether trees with different growing space differ in drought tolerance, tree discs and cores from thinning experiments of Pinus sylvestris and Pseudotsuga menziesii stands will be used to examine transpirational stress and growth reduction during previous droughts as well as their subsequent recovery. Dendroecology and stable isotopes of carbon and oxygen in tree-rings will be used to quantify how assimilation rate and stomatal conductance were altered through thinning. The results will provide crucial information for the development of short-term silvicultural adaptation strategies to adapt forest ecosystems to climate change. In addition, this study will improve our understanding of the relationship between resistance and resilience of trees in relation to extreme stress events.
In today's biodiversity crisis, there is an urgent need to monitor terrestrial and aquatic species in their natural habitats, especially those that may be endangered, invasive or elusive. Traditional species observation methods, based on acoustic or observational surveys are inefficient, costly and time consuming. On the other hand, DNA is continuously deposited in the environment from natural processes and this environmental DNA (eDNA) allows us to detect species and reconstruct their communities with a high level of sensitivity. These data can be used to obtain occurrence records and to collect more population information in field. Crucially, these data are necessary to inform management agencies about the current state of our biodiversity, and are especially urgent for species that are currently data deficient. The aims of this study are to firstly identify occurrence records from diverse sources (databases, literature) and generate a database of distributional data for species of crustacean and mollusks that are data deficient in Sweden. Secondly, we aim to detect threatened species in Swedish marine, freshwater and terrestrial habitats using novel genomic methods (DNA metabarcoding, ddPCR). Finally, based on the new data, we will run species distribution and population models, to improve information on geographic range and population status for threatened invertebrates. The results will be integrated into current monitoring programmes (e.g. red-listing) and action plans.
The Northern Eurasia Earth Science Partnership Initiative, or NEESPI, is a currently active, yet strategically evolving program of internationally-supported Earth systems science research, which has as its foci issues in northern Eurasia that are relevant to regional and Global scientific and decision-making communities (see NEESPI Mission Statement). This part of the globe is undergoing significant changes - particularly those changes associated with a rapidly warming climate in this region and with important changes in governmental structures since the early 1990s and their associated influences on land use and the environment across this broad expanse. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater Global system is to a large extent unknown. Thus, the capability to predict future changes that may be expected to occur within this region and the consequences of those changes with any acceptable accuracy is currently uncertain. One of the reasons for this lack of regional Earth system understanding is the relative paucity of well-coordinated, multidisciplinary and integrating studies of the critical physical and biological systems. By establishing a large-scale, multidisciplinary program of funded research, NEESPI is aimed at developing an enhanced understanding of the interactions between the ecosystem, atmosphere, and human dynamics in northern Eurasia. Specifically, the NEESPI strives to understand how the land ecosystems and continental water dynamics in northern Eurasia interact with and alter the climatic system, biosphere, atmosphere, and hydrosphere of the Earth. The contemporaneous changes in climate and land use are impacting the biological, chemical, and physical functions of the northern Eurasia, but little data and fewer models are available that can be used to understand the current status of this expansive regional system, much less the influence of the northern Eurasia region on the Global climate. NEESPI seeks to secure the necessary financial and related institutional support from an international cadre of sponsors for developing a viable understanding of the functioning of northern Eurasia and the impacts of extant changes on the regional and Earth systems. Many types of ground and integrative (e.g., satellite; GIS) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of this cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential and require international and active governmental participation. (abridged text)
Especially during the last decades, the natural forests of Ethiopia have been heavily disturbed by human activities. Some forests have been totally cleared and converted into fields for agricultural use, other suffered from different influences, such as heavy grazing and selective logging. The ongoing research in the Shashemane-Munessa-study area (Gu 406/8-1,2) showed clearly that, in spite of interdiction and control, forests continue to be cleared and degraded. However, it is not yet sufficiently known, how and why these processes are still going on. Growing population pressure and economic constraints for the people living in and around the forests contribute to the actual situation but allow no final answers to the complex situation. Concerning a sustainable management of the forests there is to no solid basis for recommendations from the socioeconomic and socio-cultural view. Therefore, a comprehensive analysis of the traditional needs and forms of forest use, including all forest products, is necessary. The objective of this project is, to achieve this basis by carrying out intensive field observations, the consultation of aerial photographs, satellite imagery and above all semi-structured interviews with the population in the study area in order to contribute to the recommendations for a sustainable use of the Munessa Shasemane forests.
Origin | Count |
---|---|
Bund | 735 |
Europa | 1 |
Land | 3 |
Wissenschaft | 5 |
Type | Count |
---|---|
Förderprogramm | 733 |
unbekannt | 3 |
License | Count |
---|---|
geschlossen | 2 |
offen | 733 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 106 |
Englisch | 716 |
Resource type | Count |
---|---|
Keine | 539 |
Webseite | 197 |
Topic | Count |
---|---|
Boden | 632 |
Lebewesen & Lebensräume | 687 |
Luft | 545 |
Mensch & Umwelt | 736 |
Wasser | 529 |
Weitere | 735 |