Der Umgang mit Nichtlinearitäten und die Frage des Upscaling stellen eine der größten Herausforderungen für technische und umweltrelevante Anwendungen im Gebiet der Strömungs- und Transportphänomene in porösen Medien dar. Eine Vielzahl hierarchischer (räumlicher und zeitlicher) Skalen können in porösen Medien identifiziert werden, die im Allgemeinen mit deren Heterogenitätsstrukturen zusammenhängen. Strömungs- und Transportphänomene können von gekoppelten Mechanismen verursacht oder beeinflusst werden, die von einem nichtlinearen Zusammenspiel von physikalischen, (geo-)chemischen und/oder biologischen Prozessen herrühren. Um Probleme auf diesem Feld sinnvoll angehen zu können, ist eine interdisziplinäre Umgebung unerlässlich. Die beteiligten Wissenschaftlerinnen und Wissenschaftler zeichnen sich in den unterschiedlichsten Arbeitsgebieten aus: angewandte Mathematik, Umwelt- und Bauingenieurwesen, Geowissenschaften und Erdölingenieurwissenschaften. Die gemeinsamen niederländisch-deutschen Forschungsprojekte werden an der TU Delft, der TU Eindhoven, der Universität Utrecht und der Universität Stuttgart durchgeführt. Grundlagenforschung, so wie etwa die Anwendung stochastischer Modelle und die Entwicklung effizienter numerischer Methoden, soll mit angewandter Forschung auf Feldern wie der Optimierung von Brennstoffzellen, Sequestrierung von CO2 oder der Vorhersage von Hangrutschungen verbunden werden. Als mögliche weiterführende Themen werden auch Anwendungen in der Papierherstellung oder der Biomechanik angestrebt. Ein zentraler Aspekt des Internationalen Graduiertenkollegs ist ein Lehrprogramm, das die Unterstützung von Lehre und Forschung von jungen Wissenschaftlerinnen und Wissenschaftlern zum Ziel hat. Dies soll erreicht werden, indem anspruchsvolle Kurse angeboten werden, die typischerweise die Fragestellungen der jungen Wissenschaftler abdecken. Außerdem soll alle vier Wochen via Videokonferenz ein Graduiertenseminar zur Diskussion von Forschungsergebnissen stattfinden. Es soll weiterhin ein Austauschprogramm geben, das Doktorandinnen und Doktoranden erlaubt, sechs bis neun Monate im Partnerland zu verbringen. Das somit entstehende internationale und interdisziplinäre Umfeld wird es Doktorandinnen und Doktoranden ermöglichen, effizient Spitzenforschung auf dem Feld der Nichtlinearitäten und des Upscaling im Untergrund durchzuführen.
Der Klimawandel während der mittelalterlichen Klimaanomalie (MCA) und der kleinen Eiszeit (LIA) führte zur Ausdehnung bzw. Verringerung der hypoxischen Bodenbedeckung in der Ostsee. Hier schlagen wir eine Modellierungsstudie vor, um Mechanismen, durch die der Klimawandel zu den beobachteten Trends geführt hat, systematisch zu analysieren und Modellergebnisse anhand von geochemischen Sedimentkerndaten zu validieren. Das Zusammenspiel zwischen physikalischen und biogeochemischen Prozessen führt zu einer komplexen Dynamik, die den Sauerstoffgehalt in der Ostsee steuert. Die Sedimente spielen eine wichtige Rolle, indem sie sowohl als Quelle als auch als Senke für Phosphat fungieren, das den wichtigsten biolimitierenden Nährstoff bildet. Es ist jedoch kaum bekannt, wie der Klimawandel während der MCA zur Ausbreitung von Hypoxie führte. Es wurden bereits verschiedene Auslöser vorgeschlagen, um die Ausbreitung der Hypoxie während der MCA zu erklären, wie z.B. eine erhöhte Produktion von Cyanobakterien unter wärmeren Bedingungen, eine erhöhte / verringerte Stratifikation aufgrund sich ändernder Niederschlagsmuster und eine sedimentäre Freisetzung von Phosphaten. Im ersten Teil des Projekts (Arbeitspaket AP1) werden wir ein modernes Ökosystemmodell verwenden, um Szenarien zu identifizieren, die den Zusammenhang zwischen Klimawandel und Hypoxie im Mittelalter erklären können. Das Modell wird durch die Implementierung eines frühen diagenetischen Moduls verbessert, das chemische Profile im Sediment vertikal auflösen kann (AP2). Für biogeochemische Reaktionen werden temperaturabhängige Ratenausdrücke implementiert. Das Sedimentmodul wird zunächst auf den aktuellen Zustand der Sedimente kalibriert (AP3). Szenarien aus AP1, die die Sauerstofftrends erfolgreich erklären können, werden anschließend in Modellläufen vom Mittelalter bis zur Gegenwart getestet (AP4). Die Simulation des Mittelalters kann durch verschiedene Sedimentproxies validiert werden, die Trends in den Redoxbedingungen des Tiefenwassers, in der Zufuhr von Metallen aus Schelfe in tiefere Becken, welche die Sequestrierung von Phosphat beeinflusst, und in der Menge an in Sedimenten erhaltenem Phosphor und organischer Substanz rekonstruieren können. Die erwarteten Ergebnisse des Projekts sind die Zuordnung der Ausbreitung von Hypoxie während der MCA zu einem Mechanismus und ein verbessertes Verständnis der Rolle der benthischen Dynamik, die die Eutrophierung als Reaktion auf den Klimawandel beeinflusst.
It is well established that reduced supply of fresh organic matter, interactions of organic matter with mineral phases and spatial inaccessibility affect C stocks in subsoils. However, quantitative information required for a better understanding of the contribution of each of the different processes to C sequestration in subsoils and for improvements of subsoil C models is scarce. The same is true for the main controlling factors of the decomposition rates of soil organic matter in subsoils. Moreover, information on spatial variabilities of different properties in the subsoil is rare. The few studies available which couple near and middle infrared spectroscopy (NIRS/MIRS) with geostatistical approaches indicate a potential for the creation of spatial maps which may show hot spots with increased biological activities in the soil profile and their effects on the distribution of C contents. Objectives are (i) to determine the mean residence time of subsoil C in different fractions by applying fractionation procedures in combination with 14C measurements; (ii) to study the effects of water content, input of 13C-labelled roots and dissolved organic matter and spatial inaccessibility on C turnover in an automatic microcosm system; (iii) to determine general soil properties and soil biological and chemical characteristics using NIRS and MIRS, and (iv) to extrapolate the measured and estimated soil properties to the vertical profiles by using different spatial interpolation techniques. For the NIRS/MIRS applications, sample pretreatment (air-dried vs. freeze-dried samples) and calibration procedures (a modified partial least square (MPLS) approach vs. a genetic algorithm coupled with MPLS or PLS) will be optimized. We hypothesize that the combined application of chemical fractionation in combination with 14C measurements and the results of the incubation experiments will give the pool sizes of passive, intermediate, labile and very labile C and N and the mean residence times of labile and very labile C and N. These results will make it possible to initialize the new quantitative model to be developed by subproject PC. Additionally, we hypothesize that the sample pretreatment 'freeze-drying' will be more useful for the estimation of soil biological characteristics than air-drying. The GA-MPLS and GA-PLS approaches are expected to give better estimates of the soil characteristics than the MPLS and PLS approaches. The spatial maps for the different subsoil characteristics in combination with the spatial maps of temperature and water contents will presumably enable us to explain the spatial heterogeneity of C contents.
Das Projekt B1 'Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen' ist Teil des Sonderforschungsbereiches 607 Wachstum und Parasitenabwehr und befindet sich bereits in der vierten Phase des seit 1998 laufenden Forschungsprojektes. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.
Soil organic matter (SOM) controls large part of the processes occurring at biogeochemical interfaces in soil and may contribute to sequestration of organic chemicals. Our central hypothesis is that sequestration of organic chemicals is driven by physicochemical SOM matrix aging. The underlying processes are the formation and disruption of intermolecular bridges of water molecules (WAMB) and of multivalent cations (CAB) between individual SOM segments or between SOM and minerals in close interaction with hydration and dehydration mechanisms. Understanding the role of these mediated interactions will shed new light on the processes controlling functioning and dynamics of biogeochemical interfaces (BGI). We will assess mobility of SOM structural elements and sorbed organic chemicals via advanced solid state NMR techniques and desorption kinetics and combine these with 1H-NMR-Relaxometry and advanced methods of thermal analysis including DSC, TGADSC- MS and AFM-nanothermal analysis. Via controlled heating/cooling cycles, moistening/drying cycles and targeted modification of SOM, reconstruction of our model hypotheses by computational chemistry (collaboration Gerzabek) and participation at two larger joint experiments within the SPP, we will establish the relation between SOM sequestration potential, SOM structural characteristics, hydration-dehydration mechanisms, biological activity and biogechemical functioning. This will link processes operative on the molecular scale to phenomena on higher scales.
This project aims at analysing the influence of competing national and international bureaucracies on the fragmentation of the international forest regime complex (IFRC). Its objectives are: - describing the political dimension of fragmentation of the IFRC programme- explaining the political dimension of fragmentation based on the model of bureaucratic politics- analysing the steering consequences resulting from fragmentation - trans-disciplinary design of solutions for coping with political aspects of fragmentationBuilding on the bureaucratic politics approach these objectives will be pursued by testing the linking hypothesis: Interest and influence of the bureaucracies cause a fragmented programme of the IFRC. This programme supports the goal of profitable timber production but keeps the decision about biodiversity and CO2 sequestration open hindering the effective steering by the IFRC. The project develops an analytical framework consisting of the following independent variables: competing national and competing international bureaucracies, elected politicians, national and international non-state actors and media discourses. The fragmentation of the political programme of the IFRC is the overall dependent variable. This project will analyse the influence of bureaucracies and their coalitions on fragmentation at the international level as well as in national case studies in Sweden, Poland and Germany. The other independent variables will be covered by sub-projects 2, 3 and 4. The findings will be linked to the other political and to the economic and technic-ecological sub projects in order to contribute to the multi-disciplinary description and explanation of fragmentation and its steering consequences.
Northern peatlands represent an important global carbon stock and source of methane to the atmosphere. The fate of carbon in these environments under changed climatic conditions is thus of considerable scientific importance. Our knowledge of future peatland carbon cycling is deficient with respect to the effects of future wetter conditions, both by climate change and by changes in runoff networks surrounding peatlands. We will address this research gap at Luther Bog (Ontario), which represents a northern ombrotropic bog complex that, in one area, has undergone long-term wetter soil conditions. Preliminary work demonstrated that the long-term effects of 60 years of a) winter-wetter and b) winter-wetter and summer-drier soil moisture conditions can be studied against two reference sites of similar water table dynamics, yet different vegetation and soil temperatures. To identify the impact of these relevant climate change scenarios on carbon cycling is the overarching objective of the project. Specifically, we will - establish an atmospheric carbon balance in four areas of differing climate change analogues and quantify the effect on C fluxes, C sequestration and greenhouse warming potentials (GWP) - identify the impact of the changed soil hydrologic regime on in vitro and in situ peat decomposition and the chemical quality of the formed peat- identify changes in the distribution between soil microbial and plant-derived respiration as these are differentially dependent on climatic drivers - determine differences in the temperature dependency soil microbial and plant-derived respiration under background and wetter soil moisture regimeApart from closing an important empirical research deficiency, the project will provide an empirical basis for ecosystem modeling efforts that will generalize the response of peatlands to wetter conditions and allow for the testing of climate change scenarios. The overall hypothesis to be tested is that I) wetter conditions will lead to increased carbon sequestration due to slowing of soil respiration and II) to enhanced methane emissions due to less methane oxidation and establishment of plantcommunities adapted to wet conditions. We further hypothesize that the effect of additional methane emissions will outweigh that of carbon sequestration on a 100-year time scale. We also expect that more poorly decomposed and highly permeable peat accumulates that has a high potential for CO2 emissions under oxic conditions and a more pronounced seasonal dynamics of carbon fluxes. The aggrading peat masses would thus be much more instable against future changes in hydrologic boundary conditions.
Micro-algae are responsible for nearly one-half of all CO2 sequestration on the planet and they are increasingly used for biomass production to fuel our power plants and fix their fume-CO2. Algal CO2 fixation is thus a vital process that is supported by a CO2-concentrating mechanism (CCM) in many species. In freshwater (and marine) ecosystems CO2 concentrations are low, circa 15 ìM, which requires a CCM to enhance carboxylation rates of the CO2-fixing enzyme Rubisco. This active process is assumed to require high inorganic phosphorus (Pi) concentrations, as found in the neutrophile Chlorella emersonii that has a high affinity CO2 uptake system under Pi replete conditions, but cannot realise its full CCM capacity under Pi limiting conditions. Recently, I discovered a contrasting pattern for the acidophile Chlamydomonas acidophila which realises a high affinity CO2 uptake system under both Pi replete and Pi limiting conditions. This questions the notion that CO2 uptake in C. acidophila is an active process. In addition, I have identified another algae with a third CCM strategy. I therefore propose to study the C-acquisition in these three algal species in conjunction with Pi concentration and pH to obtain mechanistic insight into algal functional responses to different conditions of CO2 and Pi. My collaboration with the Joint Genome Institute (USA), the University of Nebraska (USA), and Monash University (Australia) enables a multi-disciplinary approach that includes ecology, physiology, molecular biology and genetics to elucidate mechanisms underlying carbon sequestration in green micro-algae.
LandScales integrates the aquatic and terrestrial perspectives of landscape carbon dynamics within a multidisciplinary collaborative research environment, by characterising structures, processes, and fluxes across scales. The goal is to characterise carbon sequestration and release in a moraine landscape representative of landscapes of glacial origin. A major point is the scaling of carbon fluxes and underlying mechanisms from the plot to the landscape level by accounting for spatio-temporal heterogeneity of structures and functions, and to address the uncertainties of scaling approaches. These objectives are vital for optimising the C sequestration at the landscape scale and for sustaining an important ecosystem service.
Modelling of displacement of one fluid by another immiscible one and mass transfer between the phases is important for many geotechnical applications. An example is the injection of supercritical carbon dioxide into brine. To include the influence of heterogeneous structure that is not resolved by the numerical grid into modelling concepts is a challenge, in particular if parameter contrasts are high. In this proposal we want to derive up scaled model concepts for two-phase flow on large length scales, where we focus on the transition zone between displacing and displaced fluid (the mixing zone) during a displacement problem. The mixing zone is the critical zone, for example, for mass transfer of a dissolved component between the two phases. Based on the models that quantify the mixing zone we want in a second step to analyze the relation between mixing zone volume and interfacial area between the fluids. To derive such model concepts we want to apply multi-rate mass transfer modelling approaches that have been developed to describe solute transport in flow fields with mobile and stagnant flow zones in complexly structured and highly heterogeneous porous media. These approaches have been very successful for linear problems. We want to extend them to the non-linear problem two-phase flow problem. Project results: Immiscible two phase ï ‚ow processes in highly heterogeneous porous media, such as fractured rock, are important in many geotechnical applications, such as CO2 sequestration or oil recovery. In fractured rock classical modelling approaches are computationally intensive due to the strong contrast in the model parameters. In this project we derived upscaled two phase ï ‚ow models on the macroscale, where the detailed fracture network is no longer described. In fractured rock the fractures are related to fast ï ‚ow processes. Slow exchange of ï ‚uid takes place between the fractures and the rock matrix. For the upscaled model the fractured rock is divided into two zones. The fractures with the fast ï ‚ow processes are the mobile zone and the rock matrix with the slow ï ‚ow processes are the immobile zone. The upscaled ï ‚ow model describes ï ‚ow processes in the mobile zone only. The exchange processes between mobile and immobile zone are modelled with an additional sink-source term. This term is expanded in a way that the model becomes a multi-rate mass-transfer model for two-phase ï ‚ow. With this modelling approach we derived two upscaled models on the macroscale. The ï rst model is for oil recovery from fractured rock. This is an imbibition process, where oil as the nonwetting phase is displaced by water as the wetting phase. The ï ‚ow in the fracture network is dominated by ï ‚ow enforced by boundary conditions and the ï ‚ow in the rock matrix is dominated by capillary counter-current ï ‚ow. The second model is for CO2 storage in deep fractured rock. (abridged text)
Origin | Count |
---|---|
Bund | 42 |
Type | Count |
---|---|
Förderprogramm | 42 |
License | Count |
---|---|
offen | 42 |
Language | Count |
---|---|
Deutsch | 8 |
Englisch | 40 |
Resource type | Count |
---|---|
Keine | 26 |
Webseite | 16 |
Topic | Count |
---|---|
Boden | 39 |
Lebewesen und Lebensräume | 41 |
Luft | 35 |
Mensch und Umwelt | 42 |
Wasser | 40 |
Weitere | 42 |