API src

Found 42 results.

Graduiertenkolleg (GRK) 1398: Non-linearities and upscaling in porous media, GRK 1398: Nichtlinearitäten und Upscaling in porösen Medien

Der Umgang mit Nichtlinearitäten und die Frage des Upscaling stellen eine der größten Herausforderungen für technische und umweltrelevante Anwendungen im Gebiet der Strömungs- und Transportphänomene in porösen Medien dar. Eine Vielzahl hierarchischer (räumlicher und zeitlicher) Skalen können in porösen Medien identifiziert werden, die im Allgemeinen mit deren Heterogenitätsstrukturen zusammenhängen. Strömungs- und Transportphänomene können von gekoppelten Mechanismen verursacht oder beeinflusst werden, die von einem nichtlinearen Zusammenspiel von physikalischen, (geo-)chemischen und/oder biologischen Prozessen herrühren. Um Probleme auf diesem Feld sinnvoll angehen zu können, ist eine interdisziplinäre Umgebung unerlässlich. Die beteiligten Wissenschaftlerinnen und Wissenschaftler zeichnen sich in den unterschiedlichsten Arbeitsgebieten aus: angewandte Mathematik, Umwelt- und Bauingenieurwesen, Geowissenschaften und Erdölingenieurwissenschaften. Die gemeinsamen niederländisch-deutschen Forschungsprojekte werden an der TU Delft, der TU Eindhoven, der Universität Utrecht und der Universität Stuttgart durchgeführt. Grundlagenforschung, so wie etwa die Anwendung stochastischer Modelle und die Entwicklung effizienter numerischer Methoden, soll mit angewandter Forschung auf Feldern wie der Optimierung von Brennstoffzellen, Sequestrierung von CO2 oder der Vorhersage von Hangrutschungen verbunden werden. Als mögliche weiterführende Themen werden auch Anwendungen in der Papierherstellung oder der Biomechanik angestrebt. Ein zentraler Aspekt des Internationalen Graduiertenkollegs ist ein Lehrprogramm, das die Unterstützung von Lehre und Forschung von jungen Wissenschaftlerinnen und Wissenschaftlern zum Ziel hat. Dies soll erreicht werden, indem anspruchsvolle Kurse angeboten werden, die typischerweise die Fragestellungen der jungen Wissenschaftler abdecken. Außerdem soll alle vier Wochen via Videokonferenz ein Graduiertenseminar zur Diskussion von Forschungsergebnissen stattfinden. Es soll weiterhin ein Austauschprogramm geben, das Doktorandinnen und Doktoranden erlaubt, sechs bis neun Monate im Partnerland zu verbringen. Das somit entstehende internationale und interdisziplinäre Umfeld wird es Doktorandinnen und Doktoranden ermöglichen, effizient Spitzenforschung auf dem Feld der Nichtlinearitäten und des Upscaling im Untergrund durchzuführen.

Die Auswirkung der mittelalterlichen Klimaanomalie auf die Hypoxie in der Ostsee: Ein gekoppelter benthisch-pelagischer Modellierungsansatz

Der Klimawandel während der mittelalterlichen Klimaanomalie (MCA) und der kleinen Eiszeit (LIA) führte zur Ausdehnung bzw. Verringerung der hypoxischen Bodenbedeckung in der Ostsee. Hier schlagen wir eine Modellierungsstudie vor, um Mechanismen, durch die der Klimawandel zu den beobachteten Trends geführt hat, systematisch zu analysieren und Modellergebnisse anhand von geochemischen Sedimentkerndaten zu validieren. Das Zusammenspiel zwischen physikalischen und biogeochemischen Prozessen führt zu einer komplexen Dynamik, die den Sauerstoffgehalt in der Ostsee steuert. Die Sedimente spielen eine wichtige Rolle, indem sie sowohl als Quelle als auch als Senke für Phosphat fungieren, das den wichtigsten biolimitierenden Nährstoff bildet. Es ist jedoch kaum bekannt, wie der Klimawandel während der MCA zur Ausbreitung von Hypoxie führte. Es wurden bereits verschiedene Auslöser vorgeschlagen, um die Ausbreitung der Hypoxie während der MCA zu erklären, wie z.B. eine erhöhte Produktion von Cyanobakterien unter wärmeren Bedingungen, eine erhöhte / verringerte Stratifikation aufgrund sich ändernder Niederschlagsmuster und eine sedimentäre Freisetzung von Phosphaten. Im ersten Teil des Projekts (Arbeitspaket AP1) werden wir ein modernes Ökosystemmodell verwenden, um Szenarien zu identifizieren, die den Zusammenhang zwischen Klimawandel und Hypoxie im Mittelalter erklären können. Das Modell wird durch die Implementierung eines frühen diagenetischen Moduls verbessert, das chemische Profile im Sediment vertikal auflösen kann (AP2). Für biogeochemische Reaktionen werden temperaturabhängige Ratenausdrücke implementiert. Das Sedimentmodul wird zunächst auf den aktuellen Zustand der Sedimente kalibriert (AP3). Szenarien aus AP1, die die Sauerstofftrends erfolgreich erklären können, werden anschließend in Modellläufen vom Mittelalter bis zur Gegenwart getestet (AP4). Die Simulation des Mittelalters kann durch verschiedene Sedimentproxies validiert werden, die Trends in den Redoxbedingungen des Tiefenwassers, in der Zufuhr von Metallen aus Schelfe in tiefere Becken, welche die Sequestrierung von Phosphat beeinflusst, und in der Menge an in Sedimenten erhaltenem Phosphor und organischer Substanz rekonstruieren können. Die erwarteten Ergebnisse des Projekts sind die Zuordnung der Ausbreitung von Hypoxie während der MCA zu einem Mechanismus und ein verbessertes Verständnis der Rolle der benthischen Dynamik, die die Eutrophierung als Reaktion auf den Klimawandel beeinflusst.

Effects of water content, input of roots and dissolved organic matter and spatial inaccessibility on C turnover & determination of the spatial variability of subsoil properties

It is well established that reduced supply of fresh organic matter, interactions of organic matter with mineral phases and spatial inaccessibility affect C stocks in subsoils. However, quantitative information required for a better understanding of the contribution of each of the different processes to C sequestration in subsoils and for improvements of subsoil C models is scarce. The same is true for the main controlling factors of the decomposition rates of soil organic matter in subsoils. Moreover, information on spatial variabilities of different properties in the subsoil is rare. The few studies available which couple near and middle infrared spectroscopy (NIRS/MIRS) with geostatistical approaches indicate a potential for the creation of spatial maps which may show hot spots with increased biological activities in the soil profile and their effects on the distribution of C contents. Objectives are (i) to determine the mean residence time of subsoil C in different fractions by applying fractionation procedures in combination with 14C measurements; (ii) to study the effects of water content, input of 13C-labelled roots and dissolved organic matter and spatial inaccessibility on C turnover in an automatic microcosm system; (iii) to determine general soil properties and soil biological and chemical characteristics using NIRS and MIRS, and (iv) to extrapolate the measured and estimated soil properties to the vertical profiles by using different spatial interpolation techniques. For the NIRS/MIRS applications, sample pretreatment (air-dried vs. freeze-dried samples) and calibration procedures (a modified partial least square (MPLS) approach vs. a genetic algorithm coupled with MPLS or PLS) will be optimized. We hypothesize that the combined application of chemical fractionation in combination with 14C measurements and the results of the incubation experiments will give the pool sizes of passive, intermediate, labile and very labile C and N and the mean residence times of labile and very labile C and N. These results will make it possible to initialize the new quantitative model to be developed by subproject PC. Additionally, we hypothesize that the sample pretreatment 'freeze-drying' will be more useful for the estimation of soil biological characteristics than air-drying. The GA-MPLS and GA-PLS approaches are expected to give better estimates of the soil characteristics than the MPLS and PLS approaches. The spatial maps for the different subsoil characteristics in combination with the spatial maps of temperature and water contents will presumably enable us to explain the spatial heterogeneity of C contents.

Sonderforschungsbereich (SFB) 607: Wachstum oder Parasitenabwehr? Wettbewerb um Ressourcen in Nutzpflanzen aus Land- und Forstwirtschaft, Teilprojekt B1: Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen. Integration von Pflanzen- und Bestandesebene

Das Projekt B1 'Allometrie und Raumbesetzung von krautigen und holzigen Pflanzen' ist Teil des Sonderforschungsbereiches 607 Wachstum und Parasitenabwehr und befindet sich bereits in der vierten Phase des seit 1998 laufenden Forschungsprojektes. Bisher wurde im Projekt B1 die Allometrie als Resultat der pflanzeninternen Steuerung der Allokation untersucht. Auf Individuenebene wurden Allometrie und ihre Veränderung für verschiedene Baumarten in verschiedenen ontogenetischen Stadien untersucht. Auf Bestandesebene wurden die self-thinning-Linien von Yoda und Reineke für krautige bzw. holzige Pflanzenbestände analysiert. Bisherige Allometriebestimmungen erbrachten für diese Arten zwar ähnliche Größenordnung aber auch charakteristische Unterschiede, die Ausdruck spezifischer Strategien der Raumbesetzung und -ausbeutung widerspiegeln. Die bisher vereinzelten Auswertungen sollen in Phase IV in eine übergreifende Analyse (versch. Arten, ontogenetische Stadien, Konkurrenzsituationen, Störfaktoren) der Allometrie auf Pflanzen- und Bestandesebene münden.

Physicochemical Aging Mechanisms in Soil Organic Matter (SOM- AGING): II. Hydration-dehydration mechanisms at Biogeochemical Interfaces

Soil organic matter (SOM) controls large part of the processes occurring at biogeochemical interfaces in soil and may contribute to sequestration of organic chemicals. Our central hypothesis is that sequestration of organic chemicals is driven by physicochemical SOM matrix aging. The underlying processes are the formation and disruption of intermolecular bridges of water molecules (WAMB) and of multivalent cations (CAB) between individual SOM segments or between SOM and minerals in close interaction with hydration and dehydration mechanisms. Understanding the role of these mediated interactions will shed new light on the processes controlling functioning and dynamics of biogeochemical interfaces (BGI). We will assess mobility of SOM structural elements and sorbed organic chemicals via advanced solid state NMR techniques and desorption kinetics and combine these with 1H-NMR-Relaxometry and advanced methods of thermal analysis including DSC, TGADSC- MS and AFM-nanothermal analysis. Via controlled heating/cooling cycles, moistening/drying cycles and targeted modification of SOM, reconstruction of our model hypotheses by computational chemistry (collaboration Gerzabek) and participation at two larger joint experiments within the SPP, we will establish the relation between SOM sequestration potential, SOM structural characteristics, hydration-dehydration mechanisms, biological activity and biogechemical functioning. This will link processes operative on the molecular scale to phenomena on higher scales.

Fragmentation of the international forest regime complex: multi-dimensional descriptions, explanations, steering consequences and polital options; The production and utilisation of forest regime fragmentation by bureaucratic politics

This project aims at analysing the influence of competing national and international bureaucracies on the fragmentation of the international forest regime complex (IFRC). Its objectives are: - describing the political dimension of fragmentation of the IFRC programme- explaining the political dimension of fragmentation based on the model of bureaucratic politics- analysing the steering consequences resulting from fragmentation - trans-disciplinary design of solutions for coping with political aspects of fragmentationBuilding on the bureaucratic politics approach these objectives will be pursued by testing the linking hypothesis: Interest and influence of the bureaucracies cause a fragmented programme of the IFRC. This programme supports the goal of profitable timber production but keeps the decision about biodiversity and CO2 sequestration open hindering the effective steering by the IFRC. The project develops an analytical framework consisting of the following independent variables: competing national and competing international bureaucracies, elected politicians, national and international non-state actors and media discourses. The fragmentation of the political programme of the IFRC is the overall dependent variable. This project will analyse the influence of bureaucracies and their coalitions on fragmentation at the international level as well as in national case studies in Sweden, Poland and Germany. The other independent variables will be covered by sub-projects 2, 3 and 4. The findings will be linked to the other political and to the economic and technic-ecological sub projects in order to contribute to the multi-disciplinary description and explanation of fragmentation and its steering consequences.

INI 1128575 STP-2: Fate of Plant Residues in Soil Organic Matter Pools under Contrast Land Use as Evaluated by Two Tracer Techniques

Soil C sequestration through changes in land use and management is one of the important strategies to mitigate the global greenhouse effect. Plant residue is the primary source of C formation and sequestration in soil. The relative contribution of residues depends upon composition and decomposability of litter which is a function of lad use and management. The present project is conceived with objective to evaluate the fate of plant residue in soil C influenced by different land-use management practices. Ultimate aim to sketch policy for appropriate management practices, which would facilitate enrichment of C stock in soils for maintaining soil health and fertility as well as mitigation of global warming by C sequestration. Management practices like intensity of tilling and no tillage have a definite effect on SOC stock; it would be considered as pertinent management practice for residue derived C-turnover. To fulfil the objective as stated, representative soil samples will be collected under various land covers/uses and management practices and analysed for important physico chemical properties e.g. pH, CEC, clay content, bulk density, soil water storage, and soil porosity are the important soil physical parameters which influences C load in soil. Different pools of C viz. total SOC (Ctot), Water stable aggregates, labile fractions of oxidisable organic carbon etc. will be studied to know the C stock and its distribution in soil. Impact of added plant residue on C sequestration and C dynamics of plant residues decomposition in contrast land use will be analyzed and quantified by using 14C labelled plant residues as well as 13C natural abundance and allow for differentiation between residues-derived carbon and native SOC. Labeled microbial biomass C and mineralizable C, acetone exactable reside, 14C and d13C in CO2 and in SOM pool will be measured that may provide precise estimates of residues decomposition rates and contribution in soil organic C. Microbial biomass carbon (Cmic) and mineralizable carbon (Cmin) measured as early indicators of future trends in total SOM as it provides a good measure of labile organic matter because it directly reflects recent soil organic matter turnover. Data on biomass productivity will also be collected from those sites. Results would help us to know the relative efficiency of different land use managements for organic C enrichment or depletion in soils.

Impact of long-term wetting on carbon cycling and climate change feedback in a northern temperate bog (Ontario, Canada)

Northern peatlands represent an important global carbon stock and source of methane to the atmosphere. The fate of carbon in these environments under changed climatic conditions is thus of considerable scientific importance. Our knowledge of future peatland carbon cycling is deficient with respect to the effects of future wetter conditions, both by climate change and by changes in runoff networks surrounding peatlands. We will address this research gap at Luther Bog (Ontario), which represents a northern ombrotropic bog complex that, in one area, has undergone long-term wetter soil conditions. Preliminary work demonstrated that the long-term effects of 60 years of a) winter-wetter and b) winter-wetter and summer-drier soil moisture conditions can be studied against two reference sites of similar water table dynamics, yet different vegetation and soil temperatures. To identify the impact of these relevant climate change scenarios on carbon cycling is the overarching objective of the project. Specifically, we will - establish an atmospheric carbon balance in four areas of differing climate change analogues and quantify the effect on C fluxes, C sequestration and greenhouse warming potentials (GWP) - identify the impact of the changed soil hydrologic regime on in vitro and in situ peat decomposition and the chemical quality of the formed peat- identify changes in the distribution between soil microbial and plant-derived respiration as these are differentially dependent on climatic drivers - determine differences in the temperature dependency soil microbial and plant-derived respiration under background and wetter soil moisture regimeApart from closing an important empirical research deficiency, the project will provide an empirical basis for ecosystem modeling efforts that will generalize the response of peatlands to wetter conditions and allow for the testing of climate change scenarios. The overall hypothesis to be tested is that I) wetter conditions will lead to increased carbon sequestration due to slowing of soil respiration and II) to enhanced methane emissions due to less methane oxidation and establishment of plantcommunities adapted to wet conditions. We further hypothesize that the effect of additional methane emissions will outweigh that of carbon sequestration on a 100-year time scale. We also expect that more poorly decomposed and highly permeable peat accumulates that has a high potential for CO2 emissions under oxic conditions and a more pronounced seasonal dynamics of carbon fluxes. The aggrading peat masses would thus be much more instable against future changes in hydrologic boundary conditions.

Alternative CO2 concentrating mechanisms in different green algal species related to phosphorus limitation and pH

Micro-algae are responsible for nearly one-half of all CO2 sequestration on the planet and they are increasingly used for biomass production to fuel our power plants and fix their fume-CO2. Algal CO2 fixation is thus a vital process that is supported by a CO2-concentrating mechanism (CCM) in many species. In freshwater (and marine) ecosystems CO2 concentrations are low, circa 15 ìM, which requires a CCM to enhance carboxylation rates of the CO2-fixing enzyme Rubisco. This active process is assumed to require high inorganic phosphorus (Pi) concentrations, as found in the neutrophile Chlorella emersonii that has a high affinity CO2 uptake system under Pi replete conditions, but cannot realise its full CCM capacity under Pi limiting conditions. Recently, I discovered a contrasting pattern for the acidophile Chlamydomonas acidophila which realises a high affinity CO2 uptake system under both Pi replete and Pi limiting conditions. This questions the notion that CO2 uptake in C. acidophila is an active process. In addition, I have identified another algae with a third CCM strategy. I therefore propose to study the C-acquisition in these three algal species in conjunction with Pi concentration and pH to obtain mechanistic insight into algal functional responses to different conditions of CO2 and Pi. My collaboration with the Joint Genome Institute (USA), the University of Nebraska (USA), and Monash University (Australia) enables a multi-disciplinary approach that includes ecology, physiology, molecular biology and genetics to elucidate mechanisms underlying carbon sequestration in green micro-algae.

How Do Extreme Climate Events Affect Plant/Soil Interactions in Agroecosystems?

A very high percentage of the agronomically used area in Switzerland is covered by grasslands. This land use type is present at various altitudes (up to alpine regions), where environmental conditions, community structure, nutrient dynamics and productivity vary in a wide range. Results obtained during phase 1 of the NCCR Climate, but also by other research groups globally, lead to the conclusion that - besides an increase in mean temperature - temperature variability will increase considerably in Central Europe (Schär et al. 2004). However, the response of entire grassland systems to drought and heat remains unclear. Many earlier studies focused only on soil or vegetation (often only above-ground; e.g. Pfisterer and Schmid 2002), but did not consider the entire ecosystem with its interactions between different ecosystem components (e.g., Kahmen et al. 2004). We know that heat affects photosynthesis and - as a consequence - net carbon fluxes and plant productivity, as reported for example for oak (NCCR Phase 1; Haldimann and Feller 2004). How climatic factors affect above- and below-ground processes in temperate grasslands and how to implement safe management strategies to mitigate changes is less known. We will focus on drought and heat effects on managed grasslands. In grasslands, much of the biological activity and resource turnover happens below-ground; here carbon stocks can be as large as the annual above-ground harvested biomass. However, harvest and grazing typically take place above a certain height (typically 3 - 7 cm above ground), leaving behind large quantities of organic carbon as stubble (standing living and dead biomass) and litter. While the plant biomass above the cutting/grazing height is important for agricultural purposes (yield), biomass below this height is relevant for regrowth after cutting/grazing, for the development and maintenance of the root system and therefore resource use, for the transfer but also loss of carbon, nitrogen and other nutrients to the soil, and for soil carbon sequestration (Avice et al. 1996). The quantities and contributions of these various components to the total ecosystem depend on the allocation of assimilates and nutrients in the plants, on the metabolic activities and on the redistribution during senescence (Avice et al. 1996, Jeuffroy et al. 2002) as well as on microbial activities in the soil. The so far poorly quantified transfer rate for carbon from above-ground litter to below-ground organic matter is a key issue in this context (Lal 2004). In addition, all these processes are influenced by climatic and environmental conditions. For example, Palta and Gregory (1997) reported that wheat allocated relatively more assimilates to the roots under limited water conditions compared to adequate soil water. Kahmen et al. (2004) found stable above-ground productivity but increased below-ground productivity under drought conditions in grasslands of varying species richness. (abbrevia

1 2 3 4 5