Bunaken National Park (BNP) is one of the most famous marine national parks in Indonesia with an extraordinary diversity in marine life forms. However, this diversity is threatened by an increasing population on the islands, ongoing destructive fishing techniques and lately by an increase in tourism. Protecting and managing the future use of BNP resources will require the assessment of both, local marine biodiversity through monitoring efforts and the identification and subsequent reduction of any threats or changes in the park. A high diversity in marine Heterobranchia indicates a high diversity of metazoan life forms and a diverse habitat structure. Surveying the complete biological diversity across taxonomic groups found in BNP would be an extensive undertaking, so focus on heterobranch diversity as an indicator of coral reef health was initiated and a model group on which future monitoring and conservation efforts can be based is provided. This study follows up the first investigation of marine Heterobranchia in BNP, conducted 12 years ago, while assessing molluscan diversity, and intends to present a base line for future monitoring programs. These dataare used in the article "Second survey of heterobranch sea slugs (Mollusca, Gastropoda, Heterobranchia) from Bunaken National Park, North Sulawesi, Indonesia - how much do we know after 12 years?" (https://doi.org/10.1186/s41200-018-0136-3).
Dem Bericht über die menschliche Entwicklung 2020 des United Nations Development Programme (UNDP) folgend sind 13 von 15 Nationen Westafrikas der niedrigsten Entwicklungsstufe zuzuordnen. Mit dieser Situation gehen verringerte Anpassungskapazitäten einher hinsichtlich der Herausforderungen, die der Klimawandel in der Region mit sich bringen wird. Extreme Niederschlagsereignisse (Starkregen, aber auch längere Dürren) führen immer wieder zu einer verringerten Nahrungsmittelproduktion und damit zu Hungerperioden, die sich insbesondere zu Beginn der anstehenden Regenzeit einstellen. Das hohe Bevölkerungswachstum in der Region stellt dagegen zunehmende Anforderungen an die Nahrungsmittelversorgung. In vielen Regionen wird der Boden bereits so stark ausgebeutet, dass eine Regenerierung über die übliche Brache oft nicht mehr ausreichend ist. Gutes Ackerland wird zusehends knapp. Andererseits besteht eine verstärkte Schutzbedürftigkeit naturbelassener Flächen, die zudem von den Veränderungen des Klimas betroffen sind. Schlechtes Management der Schutzgebiete, fehlende Akzeptanz in der Bevölkerung und die zunehmende Verknappung freier Flächen zur weit verbreiteten Selbstversorgung zwingen Menschen zur Nutzung von Gebieten, die für die Erhaltung der natürlichen Landschaft vorgesehen sind. Der vorliegende Beitrag präsentiert Karten als Ergebnis von Landnutzungsanalysen in Westafrika und zeigt raumzeitlich auf, welche Wechselwirkungen zwischen Landnutzung, Biodiversität und Klima bestehen.
Der Beitrag konzentriert sich auf die Nutzung der natürlichen Ressourcen in Afrika und die dreifache Krise durch Klimawandel, Biodiversitätsverlust und Pandemien. Er soll das Bewusstsein dafür schärfen, dass die Lebensweise der Menschen in Afrika nicht die Hauptursache des Klimawandels ist, aber die Menschen und die Natur in Afrika stark von dessen Auswirkungen betroffen sind und dass der Globale Norden eine wichtige Rolle bei der Abschwächung dieser Auswirkungen spielen muss. Der Kontext des Naturschutzes in Afrika sowie Fragen der Verantwortung und Möglichkeiten des Einflusses werden diskutiert. Dies schließt die Themen Bevölkerungswachstum, Korruption, wirtschaftliche Ausbeutung und nicht nachhaltige Nutzung von Ressourcen ein. Darüber hinaus wird die Notwendigkeit von Kernschutzgebieten für Wildnis in Afrika betont, um den Verlust der biologischen Vielfalt einzudämmen. Eine wichtige Rolle bei deren Realisierung kommt sowohl nationalen Schutzgebieten als auch von lokalen Gemeinschaften verwalteten Gebieten zu. Die Realisierung dieser Ziele leidet unter Herausforderungen in der Governance sowie unter einer unzureichenden und unsicheren Finanzierung. Letztendlich ist es Aufgabe des Globalen Nordens, es zu ermöglichen, dass dem Schutz der afrikanischen Biodiversität Priorität eingeräumt werden kann: von Menschen und für Menschen.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.
Zielsetzung: Uferfiltration ist eine gängige Methode zur Trinkwassergewinnung bei begrenztem natürlichen Grundwasserangebot und wird in vielen Regionen Deutschlands mit großen Oberflächengewässern, wie z.B. in Berlin, Düsseldorf und Hamburg eingesetzt. Rohwasser, das durch Uferfiltration gewonnen wird, ist gefährdet durch den Eintrag von Schadstoffen aus Oberflächengewässern. Schadstoffe können neben organischen Verbindungen und Schwermetallen auch Krankheitserreger, wie Viren und Bakterien, sein. Die deutsche Trinkwasserverordnung (TrinkwV) beinhaltet aktuell nur Grenzwerte für bestimmte Indikatorbakterien, wie Escherichia coli und Enterokokken. Im aktuell gesetzlich festgelegten Messprogramm für die Trinkwasserqualität sind humanpathogene Viren kein Bestandteil. Die im Jahr 2021 in Kraft getretene neue EU-Trinkwasserrichtlinie (EU-TWR) sieht vor, somatische Coliphagen als Indikatorviren für Grundwasserverunreinigungen durch humanpathogene Viren zu nutzen, da die Detektion der somatischen Coliphagen deutlich einfacher ist als die der humanpathogenen Viren, wie z.B. Adenoviren. Dabei ist zu beachten, dass somatische Coliphagen keine Krankheitserreger für Menschen sind. Auf Grund des unterschiedlichen Transportverhaltens verschiedener Viren ist jedoch davon auszugehen, dass Indikatorviren und -bakterien nur beschränkt aussagekräftig für humanpathogene Viren sind. U.a. haben unsere Untersuchungen am Rhein und im Uferfiltrat des Wasserwerks Flehe gezeigt, dass die Existenz und das Abbaupotential somatischer Coliphagen nicht in direkter Korrelation zu humanpathogenen Viren, z.B. Adenoviren, stehen muss (Knabe et al., 2023). Verschiedene Faktoren können dazu führen, dass eine erhöhte Virenbelastung im Oberflächengewässer auftreten und eine Migration in das Rohwasser zur Folge haben kann. Zum einen können hydrologische Veränderungen als Folge des Klimawandels, z.B. häufigere Extremereignisse wie Trockenperioden und besonders Hochwasser (Blöschl et al., 2019), die natürliche Reinigungswirkung der Uferfiltration verringern. Zum anderen können Bevölkerungswachstum, Urbanisierung sowie Landnutzungsänderungen dazu führen, dass die Abwasserbelastung in Flüssen zunimmt (Wen et al., 2017). Die neue EU-Trinkwasserrichtline (EU-TWR) erfordert zusätzlich zur Einhaltung von Grenzwerten risikobasierte Ansätze für die ereignis-basierte Überwachung der Wasserqualität, wie bspw. das Water-Safety-Plan-Konzept (WSP) der WHO (World Health Organization). Der WSP sieht für einen Wasserversorger die Beschreibung des gesamten Trinkwasserversorgungsystems vor, einschließlich einer Erfassung aller möglichen Eintragsquellen von Gefährdungen für die Trinkwasserqualität. Eine Risikobewertung für jede einzelne Kombination von Gefährdung und Gefährdungsereignis in Form einer Risiko-Matrix nach Eintrittswahrscheinlichkeit und Schadensausmaß, liefert klare Monitoring- und Handlungsprioritäten zur Risikominimierung. Basierend auf der neuen EU-TWR werden Wasserversorger zeitnah vor dem Problem stehen, zum Teil komplexe Risikobewertungen durchführen zu müssen. Das bedeutet, dass eine Vielzahl an Gefährdungsereignissen im Hinblick auf die Eintrittswahrscheinlichkeit einer Gefahrenquelle einzustufen ist. Ziel des Projektes ist es, Wasserwerksbetreibern eine wissenschaftlich fundierte Bewertung des Risikos und Transports humanpathogener Viren bei der Uferfiltration unter Berücksichtigung aktueller gesetzlicher Vorgaben (EU-TWR) und Empfehlungen der WHO zu ermöglichen. Dabei soll insbesondere der Einfluss von Extremwetterereignissen (Starkniederschläge, Hochwasserperioden, Niedrigwasser) und messtechnischen Unsicherheiten in der Risikobewertung berücksichtigt werden. (Text gekürzt)
| Origin | Count |
|---|---|
| Bund | 384 |
| Europa | 1 |
| Land | 35 |
| Wissenschaft | 21 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Daten und Messstellen | 21 |
| Ereignis | 3 |
| Förderprogramm | 322 |
| Text | 62 |
| Umweltprüfung | 3 |
| unbekannt | 31 |
| License | Count |
|---|---|
| geschlossen | 77 |
| offen | 363 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 290 |
| Englisch | 213 |
| Resource type | Count |
|---|---|
| Archiv | 14 |
| Bild | 3 |
| Datei | 14 |
| Dokument | 30 |
| Keine | 269 |
| Unbekannt | 1 |
| Webdienst | 1 |
| Webseite | 141 |
| Topic | Count |
|---|---|
| Boden | 365 |
| Lebewesen und Lebensräume | 406 |
| Luft | 319 |
| Mensch und Umwelt | 442 |
| Wasser | 283 |
| Weitere | 437 |