API src

Found 1748 results.

Similar terms

s/bio/Biom/gi

Verwertung des Aufwuchses von vernässtem Grünland für die Erzeugung von regenerativer Energie sowie Kohlen zur CO2-Speicherung, Teilvorhaben: Optimierung des Pyrolyseprozesses der quasikontinuierlichen Batch-Pyrolyse und Vorplanung einer Pilotanwendung

Erosion der Ernährungssicherheit - Ackerlandbodenverlust im Ruwenzori-Gebirge von Uganda

Ein Brennpunkt steigenden Nahrungsmittelbedarfs ist das Albertine Rift in Afrika. Diese Region leidet unter massiver Bodendegradation aufgrund von steilen Hängen, hoher Frequenz von erosiven Starkniederschlägen und einer geringen Vegetationsbedeckung über die gesamte Vegetationsperiode. Aus dem hohen Landnutzungsdruck auf Bodenressourcen resultieren zahlreiche soziale und ökologische Probleme (Ernährungsunsicherheit, politische Unruhen, Migration). Da der Bodenverlust auf ackerbaulich genutzten Flächen die Bodenneubildung in der Region substanziell übersteigt, ist die landwirtschaftliche Nutzbarkeit der Bodensysteme zeitlich begrenzt. Flächen mit einem vollständigen Verlust der Bodenoberfläche verlieren dauerhaft das Potenzial eine gesunde Biozönose zu beherbergen. Dabei ist die Zeitskala bis zum endgültigen Verlust der Bodenoberfläche sehr heterogen und wird durch die lokale Bodenerosionsrate und die Tiefe des Bodens bis zum Ausgangsgestein bestimmt. Solozori hat zum Ziel die Bodendegradationsdynamik und ihre Auswirkungen auf die landwirtschaftliche Produktivität, die Bodenqualität und schließlich den Zusammenbruch der Ökosystemleistungen im tropischen Afrika zu verstehen und zu quantifizieren. Solozori untersucht das Ruwenzori-Gebirge von Uganda, in welchem ein hoher Landnutzungsdruck besteht und zur Entwaldung und ackerbaulichen Nutzung von steilen Hängen führt. Diese Ackerflächen sind einer enorm hohen Degradationsgeschwindigkeit ausgesetzt, welche ihre Ertragsfähigkeit aufgrund flacher Böden innerhalb von Jahrzehnten verlieren. Aufgrund dieser flachen Böden ist die Region ein ideales Beispiel für die Untersuchung von Prozessen im Zusammenhang mit begrenzten Bodenressourcen, die langfristig die Nahrungsmittelsicherheit gefährden und die Chancen einer erfolgreichen Wiederaufforstung verhindern. Solozori nutzt Fernerkundungsinformationen zur Erschließung der Landnutzungsgeschichte und Vegetationsmuster, während topografische Landschaftsmerkmale und Fallout-Radionuklide Aufschluss über die langfristigen Bodenumverteilungsraten geben. Diese Bodenumverteilungsraten werden mit den vorhandenen Bodenressourcen (Bodentiefe bis zum Ausgangsgestein) verglichen, um die räumliche Ausdehnung und die verbleibende Zeit bis zum Verlust der Anbauflächen des Rwenzori-Gebirges zu ermitteln. Solozori ist ein Beispielprojekt zur Demonstration von Ertragseffekten vor dem Hintergrund von sich verknappenden Bodenressourcen. Solozori dient damit dem dringend notwendigen Verständnis über langfristige Bodendegradationsprozesse, welche die Grundlage zur Entwicklung von nachhaltigen Agroökosystemnutzungsstrategien sind, um den Landnutzungsdruck auf Waldressourcen zu verringern und den dramatischen Verlust von bodenbezogenen Ökosystemleistungen einzudämmen. Solozori setzt den Verlust von Ackerland in eine zeitliche Dimension, was den Handlungsbedarf zum Schutz von Bodensystemen der afrikanischen Tropen auf einer neuen Ebene veranschaulicht.

WRRL Operative Überwachung Seen

Die operative Überwachung wird an 67 Seen mit einer Seefläche größer 50 ha durchgeführt, welche die geltenden Umweltziele wahrscheinlich nicht erfüllen, um das Ausmaß und die Auswirkung der Belastungen und die Wirkung der durchgeführten Maßnahmen beurteilen zu können, sowie an Wasserkörpern, in die prioritäre Stoffe eingeleitet werden. Hierbei werden solche biologischen Qualitätskomponenten und stoffliche Parameter überwacht, die auf die Belastungen am empfindlichsten bzw. deutlichsten reagieren. Der Untersuchungsumfang wird während des Bewirtschaftungszeitraums den Erfordernissen angepasst.

Aktivität und Stoffumsatz mikrobieller Nahrungsnetze im arktischen und antarktischen Meereis

Das Meereis ist ein einzigartiger Lebensraum für eine Gemeinschaft aus Pflanzen und Tieren, die ein im Meereis ausgebildetes Solekanalsystem besiedeln. Während ein guter Kenntnisstand über die mesoskalige Verteilung (ca. 10 cm) und die Zusammensetzung dieser Gemeinschaften vorliegt, ist die kleinskalige Verteilung (1 cm) und die Interaktionen der Organismen dieser Gemeinschaften nur wenig bekannt. Das Ziel des beantragten Forschungsvorhabens ist die Untersuchung der kleinskaligen Verteilung der Organismen und der Struktur des Nahrungsnetzes, das von ihnen gebildet wird. Dabei soll insbesondere der Einfluß der inneren Oberfläche des Meereises auf den Aufbau des Nahrungsnetzes berücksichtigt werden. Von der Vermutung ausgehend, dass ein großer Anteil der eisassoziierten Bakterien- und Algenbiomasse in Form von Biofilmen vorliegt, soll die Biomasse und Aktivität an Oberflächen gebundener Bakterien und Algen mit der von frei in der Sole lebenden Organismen verglichen werden. Ein weiterer Schwerpunkt liegt in der Untersuchung von bakterien- und algenfressenden Protozoen und der Quantifizierung ihrer Bedeutung für den Stoffumsatz im Meereis.

Artenschutz und Forschung an Frugivoren-Wald-Interaktionen auf den Philippinen der Zoologischen Gesellschaft Frankfurt

Welche frugivoren Voegel gibt es? Vorkommen, Bedrohungsstatus, Bestandserhaltung? - Welche Baumarten der Philippinen-Waelder nutzen sie? - Gibt es Schluesselarten (keystone species) unter den Frugivoren und den Baeumen? - Sind Frugivore noetig fuer die Waldregeneration a) durch Samenverbreitung b) durch Veraenderung der Keimfaehigkeit c) durch genetische Durchmischung von Baumpopulationen? - Wie veraendert der Frugovorenschwund infolge Jagd und Waldvernichtung den verbleibenden Wald?

Auswirkungen erhoehter 'organic matter' Gehalte auf ein Fliessgewaesseroekosystem - Untersuchungen am Beispiel eines praealpinen Moorbaches

Problemstellung: Moorassoziierte Fliessgewaesser erhalten aus den benachbarten, organisch gepraegten Lebensraeumen einen erheblichen Stoff- und Energieeintrag, dabei spielen vor allem Huminstoffe ein quantitativ bedeutende Rolle. Zielsetzung: Fuer die Haidgauer Ach im Wurzacher Ried (Lkr. Ravensburg) wurde exemplarisch untersucht, inwieweit sich dieser Eintrag auf Limnochemie und die Makrozoobenthoszoenose des Gewaessers auswirkt. Die limnochemischen Untersuchungen erfassten Menge und Dynamik der eingetragenen organic matter Frachten und deren Quellen. Das Zoobenthos wurde quantitativ auf zoenotischer Ebene sowie auf der Ebene einzelner biomassebestimmender Populationen durchgefuehrt. Um direkte Auswirkungen geloester organischer Stoffe auf aquatische Evertebraten zu hinterfragen, wurden ionenregulative Epithelien nach Exposition unter experimentellen Bedingungen mit dem Elektronenmikroskop untersucht. Die Ergebnisse belegen einen potamalisierenden Effekt der 'organic matter' Eintraege. Innerhalb der Zoenose traten zusaetzliche graduelle Verschiebungen auf, die beispielsweise auf die hohe Mobilisierung der organischen Partikel oder die Reduktion der Bioverfuegbarkeit von Calcium durch die geloesten organischen Stoffe zurueckzufuehren waren. Erste Ergebnisse zur Auswirkung der erhoehten Huminstoffgehalte auf subzellulaerer Ebene ergaben, dass Chloridzellen von Koecherfliegenlarven bei hohen Huminstoffgehalten vergroesserte Bereiche mit glattem endoplasmatischen Retikulum aufweisen. Diese Veraenderungen in der Ultrastruktur deuten damit einen moeglicherweise toxischen Effekt von Huminstoffen unter neutralen Bedingungen an, der zu einer Anpassungsreaktion auf zellulaerem Niveau fuehrt. Stand der Arbeit: Datenerhebung und experimentelle Versuche abgeschlossen, statistische Auswertung der Daten und Texterstellung laeuft.

Messstellen Phytoplankton

Derzeit wird das Phytoplankton an 78 Wasserkörpern untersucht. Für die WRRL werden fünf Wasserkörper in der überblicksweisen Überwachung und 67 Wasserkörper im operativen Messnetz anhand des Phytoplanktons untersucht. Weiterhin sind sechs nicht berichtspflichtige Seen kleiner 50 ha im regelmäßigen Monitoring, darunter in SH besonders seltene und schützenswerte Seetypen, wie die karbonatarmen Weichwasserseen sowie Seen, die ökologisch noch weitgehend intakt sind.

WRRL Überblicksweise Überwachung Seen

Die überblicksweise Überwachung dient der Bewertung des Zustands und langfristiger Veränderungen und wird in Schleswig-Holstein an den fünf großen Seen größer 10 km² Seefläche durchgeführt. Eine überblicksweise chemische Überwachung findet mindestens einmal in sechs Jahren statt. Bei der biologischen Überwachung der Seen liegt das Intervall bei einem bis drei Jahren.

Auswirkungen chemischer Belastungen auf mikrobielle Gemeinschaften

Veranlassung Gewässerökologie im Fokus der Öffentlichkeit Die durch den Klimawandel mit zunehmender Häufigkeit auftretenden extremen Bedingungen in und an Flüssen und Bundeswasserstraßen führten in der jüngeren Vergangenheit zum Teil zu verheerenden ökologischen Folgen. Mikroorganismen nahmen dabei oft eine zentrale Rolle ein und rückten das Thema Wasserqualität verstärkt in den Fokus der Öffentlichkeit. Ein Beispiel dafür ist das Fischsterben in der Oder im August 2022, welches im Rahmen der Ursachenforschung die Sensibilität, aber auch die Komplexität der Ökosysteme in Politik und Öffentlichkeit allgegenwärtig machte. Aber auch die seit 2017 in der Mosel auftretenden Cyanobakterienblüten erregen zumindest regional öffentliches Interesse, da sie oftmals eine eingeschränkte Nutzung des Gewässers nach sich ziehen. Interdisziplinäre wissenschaftliche Herausforderung: Komplexe Zusammenhänge zwischen chemischer Belastung und Biodiversität Die Entschlüsselung komplexer Wirkbeziehungen stellt eine große wissenschaftliche Herausforderung dar - einerseits aufgrund multipler Stressoren, die auf Flussysteme einwirken, wie die Auswirkungen des Klimawandels oder die Ausbreitung von Neobiota; andererseits aufgrund zahlreicher Umweltfaktoren wie Wassertemperatur, Nährstoffkonzentrationen und Abflussbedingungen. Ein größtenteils unbekanntes Ausmaß an chemischen Stressoren, insbesondere organische Spurenstoffe, belasten das aquatische Ökosystem zusätzlich. Obwohl internationale Gremien und Verbände (IPBES, EU) sowie die wissenschaftliche Gemeinschaft chemische Belastungen als einen der Haupttreiber für Biodiversitätsverlust anerkannt haben, ist der Einfluss von Chemikalien auf die Biodiversität und damit auf Ökosysteme bisher unzureichend verstanden. Erste Studien geben Hinweise auf die potentiellen Auswirkungen chemischer Belastungen auf die mikrobielle Gemeinschaft: Beispielsweise belegen sie einen statistischen Zusammenhang zwischen der Spurenstoffbelastung und dem ökologischen Zustand von Fließgewässern. Es ist daher notwendig, die komplexen Zusammenhänge zwischen solchen chemischen Stressoren und der mikrobiellen Artengemeinschaften integrativ und systematisch zu bearbeiten, um die ökologischen Entwicklungen in Bundeswasserstraßen besser zu verstehen und zu prognostizieren sowie um nachteiligen Veränderungen proaktiv entgegensteuern zu können. Die Mosel als Untersuchungsgebiet Über Einträge kommunaler Kläranlagen sowie aus industriellen und intensiven landwirtschaftlichen Aktivitäten im Einzugsgebiet gelangen komplexe Mischungen organischer Spurenstoffe in die Mosel. Darüber hinaus zeigt das Gewässer als Ausdruck eines "nicht gesunden" Ökosystems seit einigen Jahren ausgeprägte, Toxin-bildende Cyanobakterienblüten, die in der breiten Öffentlichkeit sowie bei den verantwortlichen Behörden große Aufmerksamkeit und Besorgnis erregen. Ziele - Umfassende Charakterisierung der mikrobiellen Artengemeinschaft und chemischen Belastung im Untersuchungsgebiet (Mosel) - Etablierung von experimentellen Ansätzen zur systematischen Untersuchung der Zusammenhänge zwischen chemischen Belastungen und dem Wachstum mikrobieller Populationen - (Weiter-)Entwicklung von mechanistischen Effekt-Modellen, welche den Einfluss der chemischen Belastung im Kontext multipler Stressoren auf ausgewählte Phytoplankton-Arten beschreiben.

Pyrolyse dickwandiger Faserverbundwerkstoffe als Schlüsselinnovation im Recyclingprozess für Rotorblätter von Windenergieanlagen, Teilvorhaben: Quasikontinuierliche Batch-Pyrolyse

Im Rahmen des Verbundvorhabens RE_SORT werden Pyrolyse-Technologien entwickelt, die das Recycling von dickwandigen Faserverbundstrukturen zum Ziel haben. In diesem Teilvorhaben wird eine Quasikontinuierliche Batch-Pyrolyse (QBP) entwickelt. Hierbei handelt es sich um einen Pyrolyseprozess, in dem das Matrixharz von dicken Faserverbundbauteilen (Glas- und Kohlenstofffasern) durch externe Erhitzung in ölige und vor allem gasförmige Verbindungen thermisch zersetzt wird. Das Pyrolysegas wird zur motorischen Erzeugung von Strom und Wärme sowie zum Beheizen der Pyrolysekammern genutzt. In der QBP werden die zu behandelnden Teile getrennt voneinander im ruhenden Zustand pyrolysiert, so dass die zurückbleibenden Fasern der Verbundmaterialien sortenrein dargestellt werden und in ihrer ursprünglichen Orientierung (Länge und Ausrichtung) für die nachfolgende Verwertung bereitgestellt werden können. Pyrolyseöle werden abgeschieden und für eine stoffliche Verwertung bereitgestellt. Im Rahmen des Teilvorhabens erfolgt die konstruktive und verfahrenstechnische Entwicklung der Versuchsanlage. Nach dem Vorliegen der notwendigen Genehmigungen erfolgt die Fertigung und die Errichtung der Versuchsanlage, deren Kern aus 3 miteinander verschalteten Pyrolysekammern mit einem Volumen von je ca. 10 m3 besteht. Im Rahmen des anschließenden Betriebs der Versuchsanlage erfolgt die weitere Prozessentwicklung, in der ermittelt wird, wie die Produktion von Pyrolysegas in Bezug auf Menge und Qualität über die Zeit für einen kontinuierlichen Betrieb gesteuert werden kann. Weiterhin werden die Prozessbedingungen für die Erzeugung möglichst hochwertiger Produkte (Glas- und Carbonfasern, Pyrolyseöl) optimiert. Darauf aufbauend wird eine großtechnische QBP-Anlage für die industrielle Nutzung konzipiert. Ziel ist es, die Entwicklung der QBP so weit voranzubringen, dass im Anschluss des Vorhabens eine erste großtechnische Pilotanlage errichtet werden kann.

1 2 3 4 5173 174 175