The proposed project examines the nematode fauna at the two field experiments 'Long-term recalcitrant C input' and 'Carbon flow via the herbivore and detrital food chain'. A gradient from resource rich to deeper oligotrophe habitats, i.e. from high to low diverse food webs, is investigated. The impact of resource availability and quality (recalcitrant versus labile) and presence or absence of living plants (rhizosphere versus detritusphere) on the nematode population are assessed. Insight into micro-food web structure is gained by application of the nematode faunal analysis concept, based on the enrichment, structure and channel index. In laboratory model systems carbon flux rates for food web links are determined between bacteria/fungi and their nematode grazers for dominant taxa in the arable field. Further, carbon leakage from plant roots induced by herbivore nematode is studied as link between root and bacterial energy channels. By using 13C/12C stable isotope probing (FA-SIP) fatty acids serve as major carbon currency. Coupling qualitative and quantitative data on nematode field populations, with carbon flow via biomarker fatty acids in microorganisms and grazers will allow to connect microbial and faunal food web, and to directly link nematode functional groups with specific processes in the soil carbon cycle.
Der Petén-Itzá-See, gelegen in den nördlichen Neotropen Zentralamerikas, ist ein einzigartiger Ort, um den Klima- und Umweltwandel in der Vergangenheit und Gegenwart zu verstehen. Aufgrund seiner Anfälligkeit für bedeutende Klimatreiber wie die Innertropische Konvergenzzone (ITCZ) und die Atlantische Meridionale Umwälzzirkulation (AMOC) bietet der See eine ideale Umgebung zur Untersuchung der Auswirkungen klimatischer und vulkanischer Ereignisse auf die Landschaft und die Reaktion der Ökosysteme. Seine Nähe zu großen vulkanischen Zentren in West-Zentralamerika macht ihn zu einem besonderen Standort, um die Wechselwirkung von Klima und Vulkanismus im Laufe der Zeit zu erforschen und die kombinierten Auswirkungen auf terrestrische und aquatische Ökosysteme zu bewerten. Im Jahr 2006 wurden vom International Continental Scientific Drilling Program (ICDP) Sedimentkerne aus dem Petén-Itzá-See gewonnen, die eine der längsten und ältesten kontinentalen Sedimentabfolgen in den nördlichen Neotropen darstellen und etwa 400.000 Jahre umfassen. Durch jüngste Fortschritte in der Chronologie dieses Archivs ist es nun möglich, Klimasignale zu untersuchen, die älter als 80.000 Jahre sind, einschließlich des MIS5-Interglazials (Marines Isotopenstadium 5; 130-70 ka BP). Diese Periode, die als Analogon zur heutigen globalen Erwärmung betrachtet wird, ist besonders wertvoll, um die Reaktionen von Ökosystemen in einer biodiversen und dicht besiedelten Region wie den Tiefländern Zentralamerikas zu verstehen und mögliche Anwendungen für zukünftige Klimaszenarien abzuleiten. Dieses Projekt zielt darauf ab, die Auswirkungen des früheren Klimas auf terrestrische und aquatische Ökosysteme in den Tiefländern Zentralamerikas während MIS5 zu analysieren. Wir werden innovative Biomarker, darunter n-Alkane und GDGTs, anwenden, um Veränderungen in der Produktivität des Sees, der Vegetationsdecke, den Wasserspiegeln, der Sauerstoffversorgung am Grund und der atmosphärischen Temperatur zu rekonstruieren. Durch die Analyse dieser Proxys möchten wir klimatische Unterschiede und mögliche Umweltunterschiede in den Neotropen identifizieren. Das Projekt wird auch die Reaktion der Ökosysteme auf zwei bedeutende quartäre Eruptionen untersuchen, die in den Sedimenten des Petén-Itzá-Sees dokumentiert sind: L-Tephra (124 ka BP) und Los Chocoyos (75 ka BP), die in verschiedenen Klimakontexten auftraten. Wir werden dabei speziell untersuchen, ob diesen Ereignissen ein vulkanischer Winter folgte, und die Erholungszeiten von See und Landschaft analysieren. Diese Forschung wird wertvolle Erkenntnisse für die Paläoklimatologie und Vulkanologie sowie für die Untersuchung des quartären Klimas in den globalen Tropen liefern und gleichzeitig relevante Daten für die Planung der Resilienz von Ökosystemen in den Tiefländern Zentralamerikas bereitstellen.
Die Erdoberfläche verändert sich stetig aufgrund komplexer Wechselwirkungen zwischen Klima, Hydrologie, Vegetation, Verwitterung, Erosion und Sedimentablagerung und beeinflusst so unseren Lebensraum. Die Mechanismen sowie die Magnitude und zeitliche Abfolge mit der sich klimatische Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentdynamiken auswirken, sind jedoch nur unzureichend verstanden - dies erschwert die Interpretation von marinen Sedimentarchiven in Bezug auf das Paläoklima und Erdoberflächenprozesse. In marinen Sedimentarchiven vor der chilenischen Küste finden sich aber konkrete Hinweise auf einen direkten Zusammenhang zwischen Klima und Erdoberflächenprozessen, denn während an Land zu Beginn des Holozäns zunehmende Trockenheit einsetzt, verringern sich zeitgleich die Sedimentakkumulation im Ozean. In diesem Projekt wollen wir die Magnituden und zeitlichen Abfolgen von Änderungen in der Vegetation, Hydrologie, Verwitterungs- und Erosionsraten und Sedimentablagerung im Pazifischen Ozean vom letzten glazialen Maximum (LGM) bis heute entlang der chilenischen Küste quantifizieren. In diesem Projekt vernetzen wir die Forschungsdisziplinen der Sedimentologie, Geochemie und Biologie um die Feedbacks zwischen diesen Parametern zu untersuchen. Wir postulieren, dass der Einfluss der deglazialen Klimaveränderung auf die Landschaftsentwicklung stark durch die Vegetation moduliert ist. Dadurch existieren Zeitverzögerungen zwischen den untersuchten Parametern. Mit diesem Antrag schlagen wir einen neuen Ansatz vor, der auf der Anwendung hochspezialisierter organisch- und anorganisch-geochemischer Proxy Methoden basiert. Dazu sollen Biomarker Isotopenanalysen (Delta D, Delta 13C, als Proxy für Vegetation und Hydrologie), stabile Lithium Isotopenanalysen (Delta 7Li, als Proxy für Verwitterung) und kosmogene Nuklide (meteorische 9Be/10Be Verhältnisse, als Proxy für Erosion) kombiniert werden und an den gleichen marinen Sedimentkernen angewandt werden. In einem ersten Arbeitspaket (WP1) werden wir die heutigen räumlichen Unterschiede entlang des ausgeprägten N-S Klimagradienten der chilenischen Küste evaluieren und diese Proxies auf ihre Sensitivität kalibrieren. Dazu ist die Analyse der modernen Erosionsprodukte, die durch die Flüsse in den Ozean transportiert werden, sowie mariner Oberflächensedimente vorgesehen. In AP 2 (WP2) wenden wir die so kalibrierten Methoden an drei marinen Sedimentkernen entlang der chilenischen Küste an, um Veränderungen in Klima, Vegetation, Verwitterung, Erosion und Sedimenteintrag sowie deren zeitliche Abfolge und räumlichen Muster am gleichen Material zu rekonstruieren. Diese neuartige Kombination von Proxy Methoden und deren detaillierte Kalibration und Sensitivitätsanalyse werden es ermöglichen, die Mechanismen von räumlichen und zeitlichen Unterschieden in der Reaktion von Vegetation, Verwitterung, Erosion, und Sedimentablagerung auf eine klimatisch-induzierte hydrologische Veränderungen zu quantifizieren.
Die Vorhersage und Anpassung der Gesellschaft an die Folgen des gegenwärtigen Klimawandels benötigt ein tiefes Verständnis der natürlichen, internen Wechselwirkungen an der Erdoberfläche, unabhängig vom Einfluss der Menschen. Die arktische Tundra und die borealen Wälder reagieren besonders sensitiv auf Klimaveränderungen und beeinflussen globale biogeochemische und biophysikalische Mechanismen maßgeblich, z.B. über ihr Feuerregime. Allerdings sind die langfristigen Wechselwirkungen zwischen Feuerregime, Vegetation und Klima weitestgehend unklar, obwohl gerade die langfristige natürliche Variabilität stark die kurzfristige Variabilität beeinflusst. Besonders unbekannt ist, ob und wie die derzeitig stark ansteigenden Temperaturen über der Arktis zu Verschiebungen der Biome und zu Veränderungen der Feuerregime führen. Daher wird dieses Projekt nordostsibirische Feuerregimeveränderungen während mehrerer plio- und pleistozäner Interglaziale untersuchen und dabei das einzige kontinuierliche Sedimentarchiv der letzten 3,6 Millionen Jahre nutzen: den ICDP-See El'gygytgyn. Mit einer Fokussierung auf Interglaziale verschiedener klimatischer Ausprägung (z.B. der Temperaturen) und Vegetationstypen (Tundra, sommergrüner, immergrüner Nadelwald) bearbeite ich die höchst-relevanten Fragen, was die Langfriständerungen der Feuerregime in den hohen nördlichen Breiten steuert ist - Klima oder Vegetation, und welche internen Feuer-Permafrost Interaktionen die Vegetation stabilisieren oder destabilisieren. Regionale Feuerregime werden untersucht über die Analyse von mikroskopischer Holzkohle als Proxy für Hochintensitätsfeuer, die für den immergrünen Nadelwald charakteristisch sind, und, von den gleichen Proben, die neuen sedimentären Proxies für Geringtemperaturfeuer - die Anhydrozucker Levoglucosan und seine Isomere. Diese Biomarker entstehen bei Biomasseverbrennung kleiner als 350 Grad Celsius, z.B. in den für die sommergrünen borealen Lärchenwälder charakteristischen Bodenfeuern. Um die Steuergrößen für Feuerregimeveränderungen zu identifizieren werden die Feuerrekonstruktion statistisch mit Vegetationsrekonstruktionen von Pollen und unabhängigen Klimarekonstruktionen aus dem gleichen Archiv bzw. aus der Kompilation regionaler und globaler Archive verglichen. Um zu quantifizieren, inwieweit häufige Feuer die Permafrostdegradierung und -erosion und damit die internen Vegetations-Permafrost-Interaktionen beeinflussen, werden die Feuerzeitreihen mit regionalen und lokalen Erosionsproxyreihen aus der neuen Auswertung von Korngrößendaten mittels Endmember-Modellierung verglichen. Dabei ermöglichen die Probennahme und die Analysestrategie robuste und quantitative Aussagen, unabhängig von der absoluten Altersunsicherheit der Proben. Dadurch wird das Projekt zu einem neuen und essentiellen Verständnis zeitskalenabhängiger Wechselwirkungen zwischen Klima, Feuer, Vegetation und Permafrost beitragen um die derzeitigen Umweltveränderung langfristig besser einordnen zu können.
Kohlen sind in Indonesien als Energieträger von wachsender Bedeutung. Die Ablagerung der Kohlen erfolgte vorwiegend im Tertiär. Untersuchungen zu den Ablagerungsbedingungen im Zuge der Genese dieser Kohlen (Palaeoenvironment) und der Zusammensetzung der Wälder, aus denen die Kohlen gebildet wurden, liegen bisher nur in einem geringen Umfang vor. Mit einem im Oktober 2004 begonnenen Forschungsprojekt soll diese Lücke geschlossen werden. Im Rahmen des Projekts werden Kohlen aus dem Mahakam-Delta mit Methoden analysiert. Besonderer Wert wird auf die Bestimmung der Gehalte der Biomarker (Chemofossilien) gelegt. Diese sind besonders zur Rekonstruktion der Ablagerungsbedingungen und des Pflanzeneintrags geeignet. Mikroskopische Untersuchungen geben darüber hinaus Auskunft zur Reife (thermischen Belastung) der Kohlen im Zuge der Diagenese. Außerdem soll der Vergleich der organisch-geochemischen und mikroskopischen Daten helfen, die Eignung der verschiedenen organisch-geochemischen Parameter bei der Analyse der Kohlenfazies zu überprüfen. Die Ergebnisse dieser Untersuchungen sollen als Basis für die zukünftige Bewertung der indonesischen Kohlen nach Reifegrad und Zusammensetzung genutzt werden. Um einen Beitrag zu einer möglichst umweltverträglichen Nutzung der indonesischen Kohlevorkommen zu leisten, werden zudem die Gehalte an Schwermetallen in den Kohlen bestimmt.
1
2
3
4
5
…
40
41
42