Im Straßen-, Schiffs- und Flugverkehr dominieren immer noch klimaschädliche fossile Kraftstoffe. Zunehmend kommen jedoch auch klimafreundlichere alternative Kraftstoffe und Antriebe zum Einsatz. Im Bereich der Treibhausgasminderung bei Kraftstoffen ist das UBA im Rahmen der 37. und 38. Bundes-Immissionsschutzverordnung (BImSchV) auch für den Vollzug zuständig. Unsere Mobilität basiert zurzeit zu großen Teilen auf der Verbrennung flüssiger Kraftstoffe in Verbrennungskraftmaschinen. Da das Verkehrsaufkommen in Deutschland stetig wächst, stagnieren trotz vorhandener Effizienzgewinne durch den Einsatz von moderneren Motoren und Flugzeugturbinen die absoluten Treibhausgasemissionen des Verkehrs auf einem hohen Niveau. Für die notwendige deutliche Reduktion der Treibhausgasemissionen des Verkehrs für einen ausreichenden Klimaschutzbeitrag des Verkehrs sind neben weiteren Effizienzverbesserungen bei Motoren und einer weitreichenden Elektrifizierung des Straßenverkehrs auch ein Umstieg auf nachhaltige alternative Kraftstoffe in der Schifffahrt und der Luftfahrt notwendig. Konventionelle Kraftstoffe Bei konventionellen Kraftstoffen handelt es sich um Mineralölprodukte. Im Jahr 2019 entfielen ca. 94 Prozent des Endenergieverbrauchs im Verkehrssektor auf diese Kraftstoffe. Die dominierenden Kraftstoffe im deutschen Verkehrssektor sind die im Straßenverkehr eingesetzten Diesel- und Ottokraftstoffe. Ottokraftstoff wird unter dem Namen E5 oder E10 vermarktet und bezeichnet Benzin, das einen bestimmten Anteil an Ethanol enthalten darf. Während "E" für Ethanol steht, gibt die Zahl "5", beziehungsweise "10" an, wieviel Prozent Ethanol das Benzin maximal enthalten kann. Bei dem im Benzin typischerweise enthaltenen Ethanol handelt es sich um biogen bereitgestelltes Ethanol – kurz Bioethanol – das hauptsächlich aus zucker- und stärkehaltigen Pflanzen wie Zuckerrohr, Zuckerrübe, Getreide und Mais Pflanzen gewonnen wird. Die Mindestanforderungen für Ottokraftstoffe sind in der Norm DIN EN 228 festgeschrieben. Im weiteren Sinne sind alle Kraftstoffe, die in Ottomotoren genutzt werden können, Ottokraftstoffe, also unter anderem auch Flüssiggas (LPG) bzw. Erdgas (CNG). Bei diesen handelt es sich zwar nicht um Mineralölprodukte, jedoch werden sie hauptsächlich fossil hergestellt. Da beide keine typischen Kraftstoffe sind, werden diese oft den „alternativen Kraftstoffen“ zugeordnet. Dieselkraftstoff – auch vereinfacht Diesel genannt – wird nach den in der Norm DIN EN 590 definierten Mindestanforderungen an Tankstellen unter dem Namen B7 geführt und bezeichnet Diesel aus Mineralöl mit einer Beimischung von maximal sieben Prozent Biodiesel. In Deutschland wird Biodiesel vorwiegend aus Rapsöl hergestellt. Der Großteil des Biodiesels wird jedoch importiert und aus Abfall- und Reststoffen sowie aus Palmöl sowie Rapsöl hergestellt. Palmöl als Ausgangstoff für hydrierte Pflanzenöle (HVO - Hydrogenated Vegetable Oils) spielt im Bereich des Dieselkraftstoffes zumindest für das Jahr 2020 auch eine entscheidende Rolle. Durch die Überarbeitung der Treibhausgasminderungsquote (THG-Quote) ist die Verwendung von Palmöl seit dem 1. Januar Jahr 2022 deutlich beschränkt und ab 2023 beendet, da der Anbau von Ölpalmen einer der Haupttreiber für die Rodung von Regenwald ist. Im Flugverkehr wird größtenteils aus Erdöl hergestelltes Kerosin getankt. Kerosin bezeichnet Kraftstoffe, die sich für den Einsatz in Flugturbinen eignen. In der Binnenschifffahrt wird schwefelreduzierter Binnenschiffsdiesel verwendet. In der Seeschifffahrt kommen Marinediesel- und Marinegasöle sowie Schweröle mit unterschiedlichem Schwefelgehalt und ggf. notwendigen Abgasnachbehandlungssystemen (Kraftstoffnorm: ISO 8217) zum Einsatz. Sowohl im Binnen- als auch im Seeverkehr werden mehr und mehr Schiffe mit Flüssigerdgas ( LNG – Liquified Natural Gas) oder – in ersten Modellanwendungen – mit LPG (Liquified Petroleum Gas), auch Autogas genannt, Methanol oder Biodiesel betrieben. Mehr Informationen hierzu finden Sie auf unserer Themenseite zur Seeschifffahrt. Nur durch den Ersatz von mineralölbasierten Kraftstoffen durch klimafreundliche Alternativen kann der Verkehrssektor den notwendigen Beitrag zur Senkung seiner Treibhausgasemissionen leisten. Um diese Energiewende im Verkehr zu erreichen, ist die Entwicklung und Innovation bei alternativen Antriebstechnologien von zentraler Bedeutung. Perspektivisch sollte Strom aus erneuerbaren Energiequellen zur Energieversorgung im Verkehr direkt genutzt werden, d. h. ohne weitere Umwandlungsschritte zu strombasierten Kraftstoffen, sofern dies, wie etwa im Pkw-Verkehr, technisch möglich ist. Alternative Kraftstoffe Alternative Kraftstoffe sind entweder bezüglich der Bereitstellung alternativ, also "biogen" oder "synthetisch", oder es handelt sich um andere Kraftstoffe als Alternative zu Benzin oder Diesel. Biogene Kraftstoffe, oder auch Biokraftstoffe, werden vor allem aus Pflanzen, Pflanzenresten und ‑abfällen oder Gülle gewonnen. Synthetische Kraftstoffe unterscheiden sich von konventionellen Kraftstoffen durch ein geändertes Herstellungsverfahren und oft auch durch andere Ausgangsstoffe als Mineralöl. Biokraftstoffe wie Bioethanol oder Biodiesel leisten bereits seit vielen Jahren einen Beitrag zur Minderung der Treibhausgasemissionen des Verkehrssektors. Biokraftstoffe sind entweder flüssige (zum Beispiel Ethanol und Biodiesel) oder gasförmige (Biomethan) Kraftstoffe, die aus Biomasse hergestellt werden und für den Betrieb von Verbrennungsmotoren in Fahrzeugen bestimmt sind. Man unterscheidet Biokraftstoffe der ersten und zweiten Generation, wobei eine klare Abgrenzung der Kraftstoffe beider Generationen schwierig ist. Bei der Erzeugung von Biokraftstoffen der ersten Generation wird nur die Frucht (Öl, Zucker, Stärke) genutzt, während ein Großteil der Pflanze als Futtermittel Verwendung finden kann. Biokraftstoffe der zweiten Generation sind noch in der Entwicklung und werden aus Pflanzenmaterial hergestellt, das nicht als Nahrung verwendet werden kann, zum Beispiel aus Ernteabfällen, Abfällen aus der Landwirtschaft oder Siedlungsmüll. Zu dieser Generation, dessen Vertreter auch „fortgeschrittene Biokraftstoffe“ genannt werden, gehört auch solches Bioethanol, das aus zellulosehaltigen Materialien wie Stroh oder Holz gewonnen wird. Generelle Informationen zur energetischen Nutzung von Biomasse und zu den Nachhaltigkeitsanforderungen sind auf unserer UBA-Themenseite zur Bioenergie zusammengestellt. Synthetische Kraftstoffe sind Kraftstoffe, die durch chemische Verfahren hergestellt werden und bei denen, im Vergleich zu konventionellen Kraftstoffen, die Rohstoffquelle Mineralöl durch andere Energieträger ersetzt wird. XtL-Kraftstoffe sind synthetische Kraftstoffe, die ähnliche Eigenschaften und chemische Zusammensetzungen wie konventionelle Kraftstoffe aufweisen. Sie entstehen durch die Umwandlung eines Energieträgers zu einem kohlenstoffhaltigen Kraftstoff, der unter Normalbedingungen flüssig ist. Das "X" wird in dieser Schreibweise durch eine Abkürzung des ursprünglichen Energieträgers ausgetauscht. "tL" steht für "to Liquid". Aktuell sind in dieser Schreibweise die Abkürzungen GtL (Gas-to-Liquid) bei der Verwendung von Erdgas beziehungsweise Biogas, BtL (Biomass-to-Liquid) bei der Verwendung von Biomasse und CtL (Coal-to-Liquid) bei der Verwendung von Kohle als Ausgangsenergieträger gebräuchlich. Zur Herstellung von Power-to-X (Power-to-Gas/ PtG oder PtL )-Kraftstoffen wird Wasser unter Einsatz von Strom in Wasserstoff und Sauerstoff aufgespalten. In einem Folgeschritt kann der gewonnene Wasserstoff in Verbindung mit anderen Komponenten – hier vor allem Kohlenstoffdioxid – zu Methan (PtG-Methan) oder flüssigem Kraftstoff (PtL) verarbeitet werden. Der gewonnene Wasserstoff (PtG-Wasserstoff) kann jedoch auch direkt als Energieträger im Verkehr, zum Beispiel in Brennstoffzellen-Fahrzeugen genutzt werden. Mehr Informationen hierzu finden Sie in den vom UBA beantworteten „Häufig gestellten Fragen zu Wasserstoff im Verkehr“ . Elektrischer Antrieb: Strom als Energieversorgungsoption Energetisch betrachtet, ist der Einsatz von PtG -Wasserstoff in Brennstoffzellen-Pkw bzw. von PtG-Methan und PtL in Verbrennungsmotoren von Pkw hochgradig ineffizient. Für dieselbe Fahrleistung muss etwa die drei- beziehungsweise sechsfache Menge an Strom im Vergleich zu einem Elektro-Pkw eingesetzt werden, wie die folgende Abbildung veranschaulicht. Da erneuerbarer Strom, beispielsweise aus Wind und Photovoltaik, und die notwendigen Ressourcenbedarfe für die Energieanlagen nicht unbegrenzt zur Verfügung stehen, muss auch mit erneuerbaren Energien sparsam umgegangen werden. Am effizientesten ist die direkte Stromnutzung im Verkehr, beispielsweise über Oberleitungen für Bahnen. Ähnlich effizient ist die Stromnutzung über batterieelektrisch betriebene Fahrzeuge. Deswegen sollte zur möglichst effizienten Defossilisierung des Straßenverkehrs ein weitgehender Umstieg auf batterieelektrisch betriebene Fahrzeuge angestrebt werden, wo immer dies technisch möglich ist. Vollzugsaufgaben des UBA zur 38. BImSchV In Deutschland sind Inverkehrbringer von Kraftstoffen gesetzlich verpflichtet, den Ausstoß von Treibhausgasen (THG) durch die von ihnen in Verkehr gebrachten Kraftstoffe um einen bestimmten Prozentsatz zu mindern. Dies regelt die im seit 1. Januar 2022 gültigen Gesetz zur Weiterentwicklung der Treibhausgasminderungsquote festgeschriebene THG‑Quote. Im Rahmen der THG-Quote hat das Umweltbundesamt ( UBA ) verschiedene Vollzugsaufgaben. Eine Aufgabe regelt die Verordnung zur Festlegung weiterer Bestimmungen zur Treibhausgasminderung bei Kraftstoffen (38. BImSchV ): Das UBA bescheinigt auf Antrag Strommengen, die im Straßenverkehr genutzt wurden. Weitere Informationen finden Sie auf der entsprechenden Themenseite zur 38. BImSchV .
Das Projekt "H2020-EU.3.3. - Societal Challenges - Secure, clean and efficient energy - (H2020-EU.3.3. - Gesellschaftliche Herausforderungen - Sichere, saubere und effiziente Energieversorgung), SUNlight-to-LIQUID: Integrated solar-thermochemical synthesis of liquid hydrocarbon fuels (SUN-to-LIQUID)" wird/wurde gefördert durch: Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: Bauhaus Luftfahrt e.V..Liquid hydrocarbon fuels are ideal energy carriers for the transportation sector due to their exceptionally high energy density and most convenient handling, without requiring changes in the existing global infrastructure. Currently, virtually all renewable hydrocarbon fuels originate from biomass. Their feasibility to meet the global fuel demand and their environmental impact are controversial. In contrast, SUN-to-LIQUID has the potential to cover future fuel consumption as it establishes a radically different non-biomass non-fossil path to synthesize renewable liquid hydrocarbon fuels from abundant feedstocks of H2O, CO2 and solar energy. Concentrated solar radiation drives a thermochemical redox cycle, which inherently operates at high temperatures and utilizes the full solar spectrum. Thereby, it provides a thermodynamically favourable path to solar fuel production with high energy conversion efficiency and, consequently, economic competitiveness. Recently, the first-ever production of solar jet fuel has been experimentally demonstrated at laboratory scale using a solar reactor containing a ceria-based reticulated porous structure undergoing the redox cyclic process. SUN-to-LIQUID aims at advancing this solar fuel technology from the laboratory to the next field phase: expected key innovations include an advanced high-flux ultra-modular solar heliostat field, a 50 kW solar reactor, and optimized redox materials to produce synthesis gas that is subsequently processed to liquid hydrocarbon fuels. The complete integrated fuel production chain will be experimentally validated at a pre-commercial scale and with record high energy conversion efficiency. The ambition of SUN-to-LIQUID is to advance solar fuels well beyond the state of the art and to guide the further scale-up towards a reliable basis for competitive industrial exploitation. Large-scale solar fuel production is expected to have a major impact on a sustainable future transportation sector.
Das Projekt "Gärrestversuch Bayern - Prüfung der langfristigen Nachhaltigkeit der Nutzungspfade Biogas und BtL" wird/wurde gefördert durch: Bayerisches Staatsministerium für Ernährung, Landwirtschaft, Forsten und Tourismus. Es wird/wurde ausgeführt durch: Kompetenzzentrum für Nachwachsende Rohstoffe, Technologie- und Förderzentrum.Problemstellung: Die Bodenfruchtbarkeit hängt maßgeblich vom Humusgehalt ab, der eine bedeutende Rolle für Nährstoff- und Wasserspeicherung des Bodens übernimmt und als Kohlenstoffsenke dient. Bei der landwirtschaftlichen Produktion von Biomasse wird Humus abgebaut und Nährstoffe bei der Ernte vom Feld gefahren. Die Rückführung von Nährstoffen und humusbildenden Substanzen ist somit Grundlegend für eine nachhaltige Bewirtschaftung landwirtschaftlich genutzter Flächen. Ob und in welcher Menge diese Rückführung in Form von Gärresten aus der Biogasproduktion langfristig ausreichend sein kann, ist derzeit noch offen. Besonderes Augenmerk muss auf Nutzungsrichtungen wie BtL-Produktion (biomass to liquid) liegen, bei der keine humuswirksamen Reststoffe anfallen. Zielsetzung: Das Ziel dieses 10-jährigen Versuchs ist die Überprüfung der langfristigen Nachhaltigkeit landwirtschaftlicher Produktion von Silomais und Weizen zur Verwertung als Ausgangssubstrate für Biogas und BtL. Dazu wird eine zweigliedrige Fruchtfolge mit und ohne Strohabfuhr mit unterschiedlichen Stufen organischer Düngung über Gärreste und Rindergülle sowie ausschließlich mineralischer Düngung verglichen. Umfangreiche Erhebungen zum Humusgehalt und den Humusfraktionen, den bodenphysikalischen Eigenschaften sowie dem Bodenleben stehen im Fokus. Zum Ende der Versuchslaufzeit sollten erwartete Veränderungen der Bodeneigenschaften messtechnisch nachweisbar sein, so dass die nutzungsbedingten Produktionstechniken auf ihre langfristige Anwendbarkeit bewertet werden können. Arbeitsschwerpunkte: Untersuchung unterschiedlicher Stufen organischer Düngung im Vergleich zu ausschließlich mineralischer Düngung im Hinblick auf Langzeiteffekte an vier bayerischen Standorten - Vergleich der Strohabfuhr bzw. Ganzpflanzenernte gegenüber dem Strohverbleib auf dem Feld - Einfluss unterschiedlicher Düngevarianten und Nutzungspfade auf bodenphysikalische und -chemische Eigenschaften durch Untersuchungen hinsichtlich Nmin- und Humusgehalte zur Erstellung von Nährstoff- und Humusbilanzen sowie Aggregat- und Texturzuständen - Effekte unterschiedlicher Düngevarianten und Nutzungspfade auf bodenbiologische Eigenschaften durch Untersuchungen der Meso- und Lumbricidenfauna sowie der mikrobiellen Aktivität.
Das Projekt "Biorohölerzeugung unter Einsatz der Reaktivdestillation (READEST)" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Hochschule für Angewandte Wissenschaften Hamburg, Fakultät Life Sciences, Department Umwelttechnik.Lignocellulose (Holz, Stroh) soll in Sumpfphasenreaktoren unter gleichzeitiger destillativer Entfernung von niedermolekularen Spaltprodukten verflüssigt werden. Das beantragte Projekt hat zum Ziel nachzuweisen, dass eine Stabilisierung der Sumpfphase für den kontinuierlichen Dauerbetrieb nach dem Prinzip der Reaktivdestillation grundsätzlich möglich ist. Weiterhin sollen analytische Methoden zur Charakterisierung von Sumpf- und Produktölphasen weiterentwickelt und optimiert werden. Es erfolgt eine Arbeitsteilung zwischen HAW Hamburg (HAW) und Thünen Institut für Holzforschung Hamburg (TIHF).HAW erprobt den Langzeitbetrieb der Biomasseverflüssigung durch Reaktivdestillation experimentell im Labormaßstab, erstellt Massen- und Energiebilanzen zur Beurteilung der Wirtschaftlichkeit und stellt Daten zur Auslegung einer Pilotanlage zur technischen Realisierung des Verfahrens bereit. TIHF entwickelt analytische Methoden zur Charakterisierung von Sumpfphase und Produkten weiter und optimiert diese auf die Anwendung für die Biomasseverflüssigung in der Sumpfphase mittels Reaktivdestillation.
Das Projekt "Demonstration von Technologien zur Behandlung neuer Schadstoffe in der Wasser- und Abwasserreinigung (DEMEAU)" wird/wurde gefördert durch: Europäische Kommission, Generaldirekton Forschung & Innovation / Kommission der Europäischen Gemeinschaften Brüssel. Es wird/wurde ausgeführt durch: KWR Water B.V..Das EU finanzierte Projekt DEMEAU ist ein dreijähriges Demonstrationsprojekt für vielversprechende Technologien zum Nachweis und zur Eliminierung von organischen Spurenstoffen im Wasserkreislauf. DEMEAU führt Ökobilanzen und Umweltbelastungsstudien für vier Technologiegruppen durch und fördert deren Anwendung. Die Technologien sind: künstliche Grundwasseranreicherung sowie Hybridlösungen von Keramikmembranfiltration und fortentwickelten Oxidationstechniken sowie Bioassays. Das DEMEAU Konsortium besteht aus 17 Mitgliedern aus fünf EU-Ländern und umfasst Wasserversorgungsunternehmen mit deren Unterstützung die Anwendung der vielversprechenden Technologien demonstriert wird. Ziel des Projektes ist es, die Eignung und Wirtschaftlichkeit der innovativen Methoden und Technologien weiterzuentwickeln und im technischen Betrieb zu untersuchen.
Das Projekt "Techno-ökonomische Bewertung von Verfahrensalternativen zur Herstellung synthetischer Kraftstoffen aus Biomasse im bioliq©-Verfahren" wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Industriebetriebslehre und Industrielle Produktion.Ziel der Untersuchungen in diesem Forschungsprojekt ist es, verschiedene Varianten für das das am Karlsruher Institut für Technologie (KIT) in der Entwicklung befindliche bioliq©-Verfahren zur Herstellung von synthetischen Kraftstoffen aus Biomasse zu bewerten und vergleichbar zu machen. Die Entwicklung des bioliq©-Verfahrens ist ein dynamischer Prozess, innerhalb dessen sich ständig neue Varianten für die technische Ausführung des Verfahrens ergeben. Des Weiteren wird der Entwicklungsprozess von vielen zusätzlichen Faktoren, wie beispielsweise politischen und gesellschaftlichen Rahmenbedingungen, gesetzlichen Vorgaben oder auch ökonomischen Aspekten beeinflusst. Unter Berücksichtigung dieser Rahmenbedingungen gilt es, Richtgrößen zu erarbeiten, die es ermöglichen, Aussagen über die weitere Entwicklung der Technologie in Bezug auf die Konkurrenzfähigkeit zu Kraftsoffen fossiler Herkunft zu treffen. Mit Hilfe des bioliq©-Verfahrens lassen sich minderwertige, aschereiche Biomassen in synthetische Kraftstoffe und organische Chemieprodukte umwandeln. Dieses BtL-Verfahren bietet die Möglichkeit, im Gegensatz zu den bereits weit verbreiteten Verfahren zur Herstellung von biogenen Kraftstoffen der ersten Generation, die gesamte Pflanze in Kraftstoff umzusetzen. Neben den daraus resultierenden Vorteilen in Bezug auf den Ackerflächenbedarf, entsteht durch das bioliq©-Verfahren keine Konkurrenzsituation zwischen der Nahrungsmittelproduktion und der Kraftstoffherstellung. Vielmehr können die bei der Nahrungsmittelproduktion anfallenden Abfallprodukte und Pflanzenreste als Einsatzstoff für das bioliq©-Verfahren verwendet werden. Es handelt sich um ein mehrstufiges Verfahren, das zunächst Biomasse, die über große Acker- und Waldflächen verteilt anfällt, in dezentralen Anlagen zu einer pumpfähigen Suspension, dem sogenannten Slurry, verflüssigt, der im Vergleich zur Ausgangsbiomasse eine um den Faktor zehn gesteigerte volumenbezogene Energiedichte aufweist und somit wirtschaftlich transportiert werden kann. Aus diesen zahlreichen dezentralen Anlagen, wird der produzierte Slurry per Bahn in eine große zentrale Anlage transportiert. In dieser zentralen Anlage finden die Vergasung des Slurrys, die anspruchsvolle Aufbereitung und die Umwandlung des Synthesegases in synthetischen Kraftstoff statt.
Das Projekt "Evaluierungsstudie im Hinblick auf eine großindustrielle Produktion von BtL-Kraftstoffen" wird/wurde gefördert durch: Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz / Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. Es wird/wurde ausgeführt durch: Fichtner GmbH & Co. KG.
Das Projekt "Cracken - Screening von biogenen Abfallsubstanzen zur Umwandlung in Benzin- und Dieselkraftstoffen durch katalytisches Cracken" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT.Thema: Mittelfristig ist es notwendig, realisierbare Biokraftstofftechnologien einzuführen, die das Spektrum möglicher Einsatzstoffe gegenüber der Biodiesel- und Bioethanolherstellung erweitern. In diesem Projekt sollen bisher nicht zur Kraftstoffherstellung genutzte Reststoffe und Koppelprodukte der technischen Pflanzenölnutzung für dieses Anwendungsfeld erschlossen werden. Ziele: Ziel des Vorhabens ist die Entwicklung von Verfahren zur Konversion verschiedener ölpflanzenstämmiger Rest- und Abfallstoffe in biogene, flüssige Treibstoffe. Die neuen Treibstoffe sollen gemeinsam mit lignozellulosestämmigen BTL-Kraftstoffen das Produktspektrum verfügbarer Biokraftstoffe erweitern. Darüber hinaus sollen erste Untersuchungen zur gezielten Konversion in gasförmige Kohlenwasserstoffe durchgeführt werden. Insgesamt zielt die Forschungsarbeit darauf ab, das katalytische Cracken zu einem Standbein einer bundesweiten, nachhaltigen und tragfähigen Biomassestrategie auszubauen. Maßnahmen: Das katalytische Cracken an mikro- und mesoporösen Katalysatoren ist ein Verfahrensansatz zur direkten Umwandlung pflanzlicher und tierischer Fette und Öle sowie ihrer Derivate in sauerstofffreie Kohlenwasserstoffgemische. Die Arbeiten dieses Projektes basieren auf dem in 12 europäischen Staaten patentierten 'greasoline®'-Verfahren zur Erzeugung von Diesel- und Benzinkraftstoffen durch katalytisches Cracken mit Aktivkohle als Katalysator. In einem ersten Schritt werden aus Ölpflanzen und tierischen Reststoffen stammende Fette und Öle sowie deren Koppelprodukte hinsichtlich ihrer Eignung für die Konversion in biogene, flüssige Treibstoffe und gasförmige Kohlenwasserstoffe untersucht. Für die aussichtsreichsten Stoffe werden dann im Labormaßstab angepasste Konversionsverfahren entwickelt. Die Konversion ausgewählter Einsatzstofffraktionen sollen abschließend im Technikumsmaßstab (Zufuhr ca. 3 Liter pro Stunde) zur Vorbereitung künftiger Produktionsanlagen untersucht werden. Die flüssigen Produkte sollen in ihrer chemischen Zusammensetzung handelsüblichem Benzin- und Dieselkraftstoff aus fossilen Quellen weitgehend entsprechen.
Das Projekt "Untersuchung der Selbstzündung von Bio-Kerosin für Stickoxid-arme Verbrennung" wird/wurde gefördert durch: Freie Hansestadt Bremen - Der Senator für Umwelt, Bau und Verkehr / Kommission der Europäischen Gemeinschaften Brüssel / Saacke, Abteilung Forschung und Entwicklung. Es wird/wurde ausgeführt durch: Universität Bremen, Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation.BTL-Kraftstoffe (BTL = biomass to liquid) können Kraftstoffe fossiler Herkunft ersetzen und dabei grundsätzlich neben den CO2-Emissionen bei optimierter Verbrennung zusätzlich auch die Emissionen an Stickoxiden und Rußpartikeln deutlich reduzieren. Darüber hinaus weisen diese Biokraftstoffe eine hohe Ertragseffizienz auf (etwa drei- bis viermal höher als für Bio-Diesel). Das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) an der Universität Bremen arbeitet seit 2008 in Projekten am Zündverhalten von BTL-Kerosin-und BTL-Diesel-Einzeltropfen. Bisher besteht jedoch eine Lücke zur technischen Anwendung der erlangten Ergebnisse. Ein Hauptproblem liegt dabei in der Vorverdampfung und Vormischung in heißer Hochdruckumgebung, ohne dass das gebildete Gemisch vorzeitig und außerhalb der Brennkammer zündet. Daher soll in diesem Forschungsvorhaben die Zündung technischer Sprays unter maschinenidentischen Bedingungen untersucht werden. Damit werden nicht nur die vorhandenen Simulationen validiert, sondern es sollen auch Gerätegeometrien und -parameter untersucht werden, die denen der Brenner des Bremer Firmenpartners SAACKE GmbH entsprechen. Mit den Forschungsergebnissen will die Fa. SAACKE GmbH eigene Brenner weiterentwickeln.
Das Projekt "Entwicklung eines BtL-Reformers mt Metallmembran in Kombination mit einer PEM-Brennstoffzelle für den APU-Einsatz in Nutzfahrzeugen" wird/wurde gefördert durch: Arbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto-von-Guericke' e.V. / Bundesministerium für Wirtschaft und Technologie. Es wird/wurde ausgeführt durch: Zentrum für BrennstoffzellenTechnik GmbH.Im Rahmen des Vorhabens 300 ZN wurde die katalytische Dampfreformierung von GtL-Kraftstoff (Gas to Liquid) zu einem wasserstoffreichen Reformatgas erfolgreich durchgeführt. Dieser Kraftstoff wurde eingesetzt, da der im bewilligten Forschungsantrag vorgesehene Kraftstoff BtL (Biomass to Liquid) bis heute nicht kommerziell erhältlich ist. Die beiden Kraftstoffe unterscheiden sich nach Herstellerangaben nur durch den Ursprungsrohstoff, sind in der Zusammensetzung aber identisch. Es wurden sowohl die Reformer-Brenner-Einheit des Vorgängerprojektes 218 ZN als auch vier weitere Reformer-Brenner-Einheiten, die mit Katalysatoren verschiedener Hersteller beschichtet wurden, betrieben und experimentell untersucht. Anhand des Vergleichs von Umsatzraten und Kohlenstoffabscheidungen wurde eine Reformer-Brenner-Einheit mit Katalysatorbeschichtung der Süd-Chemie AG für den Aufbau des Membranreformers ausgewählt. Die Palladiummembranen (Pd-Membranen) wurden mit zwei unterschiedlichen Membranstrukturen und zwei verschiedenen keramischen Zwischenschichten (Yttrium stabilisiertes ZrO2, kurz: YSZ und Titandioxid, kurz: TiO2) hergestellt. Die Zwischenschichten wurden im Hinblick auf hohe Stickstoffpermeanzen und kleine maximale Porendurchmesser optimiert. Insgesamt konnten im Projektverlauf zehn Palladiummembranen durch ein optimiertes und der Rohrgeometrie angepasstes electroless plating Verfahren gefertigt und getestet werden. Die Oxidationsbeständigkeit der metallischen Stützstruktur und die Stabilität der keramischen Zwischenschicht sind auch zu Projektabschluss noch als problematisch anzusehen. Die thermozyklische Belastbarkeit der keramischen Zwischenschicht wurde durch Zyklen mit langsamer und schneller Aufheizgeschwindigkeit bis 700 Grad C getestet. Die YSZ-Zwischenschicht ist thermisch stabil und zeigt Abweichungen der N2- Permeanzen von weniger als 10 Prozent. Die TiO2-Zwischenschicht ist thermisch instabil, da mit jedem thermischen Zyklus die N2-Permeanz abnimmt. Die Pd-Membranen wurden erfolgreich bis zu einem Druck von 8 bar und Temperaturen bis 800 Grad C getestet. Auf beiden Zwischenschichten konnten zusammenhängende dichte Pd-Schichten erzeugt werden. Auf der porösen YSZ-Schicht bildete sich eine sehr raue Pd-Schicht. Auf der glatten TiO2-Schicht wurde die Bildung einer weniger porösen Pd-Schicht beobachtet. Die in diesem Vorhaben hergestellten Membranen weisen gegenüber den Membranen des Vorgängerprojektes deutlich verbesserte Eigenschaften auf. So konnte die H2/N2-Permselektivität von Werten zwischen 20 und 40 auf Werte zwischen 100 und 400 verbessert werden. In einem Fall wurden Permselektivitäten bis 1600 erreicht. Überhitzer-Mischer-System und eine Verdampfer-Überhitzer-Mischer-Kombination integriert und untersucht. Des Weiteren wurde ein Retentatrückführungssystem realisiert, wofür drei Hochtemperatur- Drosseln entwickelt und untersucht wurden. (Text gekürzt)
Origin | Count |
---|---|
Bund | 33 |
Type | Count |
---|---|
Förderprogramm | 31 |
Text | 2 |
License | Count |
---|---|
geschlossen | 1 |
offen | 31 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 31 |
Englisch | 6 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 1 |
Dokument | 2 |
Keine | 14 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 33 |
Lebewesen & Lebensräume | 30 |
Luft | 18 |
Mensch & Umwelt | 33 |
Wasser | 18 |
Weitere | 32 |