API src

Found 181 results.

Related terms

Strom aus Biomasse - Installierte Leistung (Lkr.)

Summe der installierten Leistungen der Biomasseanlagen je Landkreis in Bayern.

Strom aus Biomasse - Installierte Leistung (Gem.)

Summe der installierten Leistungen der Biomasseanlagen je Gemeinde in Bayern.

Biomassebefeuertes Heizkraftwerk Warendorf

Holz, einschließlich Altholz, kommt eine wichtige Rolle als erneuerbarer Energieträger zu. Die energetische Nutzung von Biomasse kann wichtige Beiträge zur nachhaltigen Energieversorgung und zum Klimaschutz liefern. In Deutschland werden zur Zeit jährlich ca. 5 Mio. t Altholz ohne weitere stoffliche oder energetische Nutzung deponiert, rund 2 Mio. t werden exportiert. Es werden daher aus heutiger Sicht zusätzliche Kapazitäten zur energetischen Nutzung von Altholz benötigt. Hinzu kommt, dass nach Auslaufen der Übergangsregeln der TA Siedlungsabfall im Jahr 2005 die Deponierung von Altholz nicht mehr gestattet sein wird. Die Bio-Energiewerk Warendorf (BEW) GmbH & Co. KG beabsichtigt, regional anfallendes Aufkommen an unzerkleinertem Industrierestholz und Strauchschnitt in einem neu zu errichtenden 13 MW-Biomasse-Heizkraftwerk energetisch zu verwerten. Das emissionsseitig und energetisch optimierte Heizkraftwerk soll in einem Energieverbund mit dem ortsansässigen Industriebetrieb Warendorfer Hartsteinwerke, einer noch zu errichtenden Klärschlamm- und Strauchschnitttrocknungsanlage und der örtlichen, kommunalen Kläranlage betrieben werden. Das Biomasse-Heizkraftwerk wird die Warendorfer Hartsteinwerke mit Prozesswärme und Strom, die Kläranlage mit Strom und die Trocknungsanlage mit Niedertemperaturwärme versorgen. Überschussstrom wird in das öffentlich Stromnetz eingespeist. Zur Vermeidung von Geruchsemissionen wird die Abluft der Trocknungsanlage im Heizkraftwerk als vorgewärmte Verbrennungsluft genutzt. Der in der Trocknungsanlage behandelte Strauchschnitt wird im Heizkraftwerk als Brennstoff eingesetzt, der getrocknete Klärschlamm wird an das örtliche Klärwerk zurückgeführt und extern verbrannt. Durch die energetische Verwertung von jährlich 27.000 t Industrierestholz und 3.000 t Strauchschnitt in der geplanten, dezentralen Anlage zur gekoppelten Strom- und Wärmeerzeugung sollen ca. 88 Mio. kWh/a fossile Energieträger substituiert und pro Jahr ca. 40.000 t CO2-, 10 t Staub-, 213 t SO2-, 85 t NOx- und 33 t CO-Emissionen vermieden werden. Das Vorhaben wird einen wichtigen Beitrag zur Gestaltung einer nachhaltigen Energieversorgung auf Basis erneuerbarer Energien leisten. Zudem trägt das Projekt zur Verminderung von Treibhausgasemissionen bei. Dabei ist insbesondere auf den vorgesehenen Energieverbund im Sinne einer kooperativen Kraft-Wärme-Wirtschaft hinzuweisen. Das Vorhaben wird durch ein umfangreiches Messprogramm begleitet und somit Erkenntnisse liefern, wie Altholz in feuerungs- und emissionsseitig optimierten, dezentralen Holzheizkraftwerken zur Strom- und Wärmeerzeugung im Verbund mit anderen Anlage genutzt werden kann und mit welcher Wirtschaftlichkeit dies machbar ist.

Errichtung eines mit Altholz befeuerten Biomasse-Heizkraftwerks mit optimierter Wärmenutzung

Das Unternehmen wird in Dresden-Niedersedlitz ein mit Altholz befeuertes Biomasse-Heizkraftwerk errichten. Stündlich werden dort etwa 6 Tonnen Altholz aus dem städtischen Altholzaufkommen, den Altholzfraktionen des Sperrmüllaufkommens und dem örtlichen Bauabbruchholzes eingesetzt werden. Die Anlage ist so konzipiert, dass sie auf den Altholzanfall der Stadt Dresden zugeschnitten ist. Unnötige Transporte über größere Strecken unterbleiben. Die Energieerzeugung erfolgt in Kraft-Wärme-Kopplung. Der erzeugte Strom soll auf Basis des Erneuerbare-Energien-Gesetz ins Stromnetz des örtlichen Netzbetreibers eingespeist werden. Fernwärme wird für ein Industrie- und Gewerbegebiet und für das Stadtgebiet von Heidenau ausgekoppelt. Der Modellcharakter der Anlage besteht darin, dass die Errichtung des Biomasseheizkraftwerks und die Sanierung des bestehenden (Alt-)Wärmenetzes ein energetisches Gesamtkonzept darstellen. Dadurch soll der spezifische Energiebedarf für die Wärmebereitstellung um 35 Prozent gesenkt werden. Kraft-Wärme-Kopplung spielt bisher bei Altholzanlagen vergleichbarer Größenordnung außerhalb der Holzwerkstoffindustrie i.d.R. eine untergeordnete oder gar keine Rolle. Mit dem Vorhaben soll erstmals in Deutschland in einem Altholzheizkraftwerk eine Rostfeuerung mit einem Horizontalkessel errichtet werden. Die vorgesehene Bauart verspricht deutlich höhere Verfügbarkeit als bei herkömmlichen Anlagen mit vertikal aufgesetztem Kessel und höhere Nutzungsgrade. Eine ebenfalls erstmals für Holzfeuerung eingesetzte spezielle Bauart der Rostfeuerungstechnik ermöglicht es, Holzstücke mit einer Kantenlänge von bis zu 500 mm zu verwenden. Dies reduziert den energetischen Aufwand für die Zerkleinerung des eingesetzten Holzes sowie die Staub- und Lärmbelastung. Mittels aufwendiger Simulationsrechnungen konnten Feuerraumgeometrie sowie Luftdüsenanordnung optimiert und dadurch die Entstehung von Stickoxiden und Kohlenmonoxid reduziert werden. Durch die Nutzung von jährlich 47.000 Tonnen Altholz können 32.000 Tonnen CO2-Emissionen pro Jahr vermieden werden. Daher trägt das Vorhaben insbesondere zur Erreichung des im nationalen Klimaschutzprogramm der Bundesregierung formulierten CO2-Minderungsziels und des dort festgeschriebenen Verdopplungsziels für den Anteil erneuerbarer Energien an der Stromerzeugung und am Energiemix bis 2010 bei. Darüber hinaus kann ein ansonsten anfallender Frischwasserbedarf von etwa 250.000 m3 und ein Abwasseranfall von etwa 150.000 m3 durch ein Luftkühlerkonzept eingespart werden. Der erforderliche Strombedarf wird durch die eingesetzte Technik minimal gehalten.

Regionaler zellularer Verbund von Versorgungseinheiten mit Netzregelaufgaben

Für einen stabilen Netzbetrieb muss das Angebot an elektrischer Leistung stets dem Verbrauch entsprechen. Dazu halten die Übertragungsnetzbetreiber Regelleistung zur Primär- und Sekundärregelung sowie Minutenreserve vor. Mit der Zunahme der Leistungseinheiten mit volatiler Netzeinspeisung aus erneuerbaren Energien, wie Windkraft und Photovoltaik, erhöht sich permanent der Bedarf an Regelleistung. Gleichzeitig wird die eingespeiste Leistung aus konventionellen Großkraftwerken und damit die zur Verfügung stehende Regelleistung abnehmen. Aktuelle Studien zeigen zudem, dass in der Primärregelung künftig signifikant kürzere Reaktionszeiten und höhere Leistungsänderungsgeschwindigkeiten erforderlich sind. Die so entstehende Bedarfslücke kann künftig durch regionale zellulare Verbünde von Versorgungseinheiten abgedeckt werden. Sie sind gekennzeichnet durch eigene dezentrale Versorger-, Verbraucher- und Speicherkapazitäten , insbesondere Industriebetriebe mit eigenen Heizkraftwerken auf Basis von Gas, Biomasse oder Kohle mit Priorität der Wärmeversorgung, Windenergie- und Photovoltaik-Anlagen sowie elektrische Batteriesysteme und thermische Speicher. Sie stellen nach außen einen Verbund mit positiver und negativer Regelreserve dar. Der Netzbetreiber kann die einzelnen Verbünde gestuft einsetzen und abrufen. Hierdurch entstehen zusätzliche Redundanzen, welche die Gesamtsystemstabilität erhöhen. Ziel des Vorhabens ist es zunächst, Lösungsansätze zu entwickeln, so dass regionale zellulare Verbünde von Versorgungseinheiten auch hochdynamische Netzregelaufgaben erfüllen können. Das komplexe Zusammenwirken von Energiebereitstellungs-, Nutzungs- und Speichereinheiten unterschiedlicher Energieformen stellt dabei eine besondere Herausforderung dar. Die Übernahme von Netzregelaufgaben muss ohne Abstriche bei Prozess- und Versorgungsstabilität, Betriebszuverlässigkeit und Anlagenlebensdauer erfolgen. Nur durch die Integration geeigneter Speicher, einer intelligenten Nutzung systeminhärenter Speicherkapazitäten sowie einer übergeordneten Steuerung und Überwachung des komplexen dezentralen Systems können die Anforderungen erfüllt werden. Als Entwicklungsplattform und Demonstrator soll das Technikum des Zentrum für Energietechnik (ZET) der TUD dienen. Es repräsentiert einen derartigen Verbund dezentraler Erzeuger- und Verbrauchereinheiten von Elektroenergie und Wärme mit Kopplung zum Strom- und Wärmenetz des lokalen Energieversorgers im Universitätscampus.

Untersuchung einer automatisierten aluminiumsilikat-basierten Brennstoffadditivierung von Holzhackschnitzeln zur Emissionsminderung von Biomasseheizkraftwerken

Untersuchung einer automatisierten aluminiumsilikat-basierten Brennstoffadditivierung von Holzhackschnitzeln zur Emissionsminderung von Biomasseheizkraftwerken - Nachbewilligung

Antrag auf immissionsschutzrechtliche Genehmigung nach §§ 4 und 19 BImSchG zum Betrieb des Biomasseheizkraftwerkes zur Erzeugung von Wärme und Strom auf dem Grundstück Fl. Nr. 523/11 der Gemarkung Ascha, Fassbinderstraße 5 in 94347 Ascha durch die Bayernwerk Natur GmbH

Die Nahwärme Ascha GmbH betreibt auf dem o.g. Grundstück ein Heizkraftwerk zur Versorgung der Gemeinde mit Wärme. Die Anlage setzt sich aus einem Blockheizkraftwerk (BHKW, Grundlast), einem Spitzenlastkessel (Heizöl EL) und einem Biomassekessel (Hackschnitzel) zusammen. Außerdem gehören zur Gesamtanlage ein Hackschnitzel- und ein Pelletlager, ein Holzvergaser inkl. Notfackel, ein Pflanzenöltank und ein Heizhaus mit Pufferspeicher und Netzpumpen. Das BHKW-Modul (Zündstrahlmotor) wird in Kombination mit dem Holzvergaser mit naturbelassenen Holzpellets und Pflanzenöl betrieben, die Feuerungswärmeleistung beträgt ca. 590 kW. Der mit Heizöl betriebene Spitzenlastkessel weist eine Feuerungswärmeleistung von 857 kW auf. Für den Biomassekessel mit einer Feuerungswärmeleistung von 722 kW werden naturbelassene Hackschnitzel als Brennstoff verwendet. Die Abgase der drei Feuerungsanlagen werden über einzelne Abgaskamine abgeleitet. Der Holzvergaser verfügt über eine Notfackel mit einer Höhe von etwa 10,4 Metern. Die Notfackel kommt im bestimmungsgemäßen Betrieb nicht zum Einsatz. Gemäß § 1 Abs. 3 der 4. BImSchV handelt es sich bei den Teilanlagen (BHKW-Modul, Biomassekessel und Ölkessel) um eine gemeinsame Anlage. Unter Anwendung der Additionsregel unterliegt die Anlage dem Anwendungsbereich der 4. BImSchV und ist somit immissionsschutzrechtlich genehmigungsbedürftig.

Aktive Oxidation bei niedrigem Temperaturniveau

Als aktive Oxidation wird eine Korrosionserscheinung bezeichnet, die einen durch Chlorverbindungen ausgeloesten Materialabtrag mit der Bildung poroeser Deckschichten beschreibt. Diese Erscheinung ist im Bereich von Betriebstemperaturen um 5000 C bekannt und beschrieben. Jedoch tritt aktive Oxidation auch bei niedrigerem Temperaturniveau bei Biomasseheizkraftwerken auf. Den Ablauf des Korrosionsgeschehens bei niedrigen Temperaturen zu klaeren, ist Ziel der Aktivitaeten.

Optimiertes Brennstoffmanagement und intelligenter Betrieb moderner Biomasseheizkraftwerke

1 2 3 4 517 18 19