API src

Found 65 results.

'NIP-II: Konzipierung einer Laboranlage zur Beschichtung von Coilmaterial als Halbzeug zur Herstellung metallischer Bipolarplatten'

Im Rahmen des Projektes soll eine Laboranlage konzipiert werden, um beschichtetes Coilmaterial als Halbzeug zur Herstellung metallischer Bipolarplatten herzustellen. Das Beschichtungsverfahren der Precors GmbH ist vakuumfrei, umweltfreundlich und basiert auf konventionellen Behandlungsschritten und ist daher prädestiniert für die Großserienproduktion metallischer Bipolarplatten. Das im Labormaßstab erfolgreich für den Brennstoffzelleneinsatz qualifizierte Beschichtungsverfahren der Precors GmbH (F-Cell-Award 2016) wird im Zuge des geförderten Projektes dahingehend entwickelt, metallische Endlosfolien in einem automatisierbaren Prozess zu beschichten. Gleichzeitig werden Skalierungsmethoden entwickelt und erforscht, welche ein Upscale für das benötigte Ausgangsmaterial (Graphenoxid-Synthese) ermöglichen. Im Rahmen des Projektes sollen Konzepte erarbeitet werden, um Produktionsraten von mindestens 20 Liter pro Tag herzustellen, um einen kontinuierlichen Produktionsbetrieb generell zu ermöglichen.

DegraBat - Degradationsprozesse in All-Vanadium-Redox-Flow-Batterien, Teilprojekt: Methoden zur gezielten Alterung und Optimierung der Membranen - Umsetzung in die Praxis

Die Vanadium-Redox-Flow-Batterie (VRFB) ist eine vielversprechende Technologie, um Speicherkapazität für eine Stundenreserve günstig bereitzustellen. In der VRFB wird ausschließlich Vanadium in vier Oxidationsstufen eingesetzt. Dies schließt die Kreuzkontamination der Redoxpaare aus und erhöht die Lebensdauer der Batterie. Nachteilig sind die Korrosivität des Elektrolyten und die damit verbundenen Materialanforderungen sowie die Selbstentladung der Batterie. Um die Materialentwicklung für alle Komponenten, d.h. Elektroden, Elektrolyt, Membran, Bipolarplatten und Dichtungen, voranzutreiben, müssen deren Degradationsprozesse im Betrieb verstanden werden. Darauf aufbauend sollen Verfahren entwickelt werden, um in anwendungsnahen Materialtests eine beschleunigte Alterung herbeizuführen. Die Ergebnisse sollen in ein Modell eingepflegt werden, um die Kosten auf die Lebensdauer eines Systems abzuschätzen und um die Betriebsweise so anzupassen, dass die Lebensdauer erhöht wird. Die Komponenten von Vanadium-Redox-Flow-Batterien (VRFB) werden einzeln und in ihrem Zusammenwirken auf ihr Degradationsverhalten untersucht. Dazu werden Alterungsprozesse identifiziert, Parameterabhängigkeiten definiert und daraus Protokolle erstellt. An Langzeit-Testständen gealterte Komponenten werden mit im Betrieb gealterten Komponenten von industriellen Partnern verglichen. Es werden Methoden zur gezielten und beschleunigten Alterung entwickelt. Die Degradation der Komponenten wird mit ex-situ und on-line Methoden untersucht. Es wird ein Modell erstellt, das Vorhersagen über die Langzeitstabilität und Kosten für VRFB-Systeme ermöglichen soll. Die Projektpartner bilden einen großen Teil der VRFB-Komponenten ab und den beteiligten Unternehmen werden wissenschaftliche Partner an die Seite gestellt. Die Projektpartner arbeiten interdisziplinär und übergreifend zusammen, so dass die Ergebnisse verifiziert werden können und eine breite Datenbasis zur Verfügung steht.

DegraBat - Degradationsprozesse in All-Vanadium-Redox-Flow-Batterien, Teilprojekt: Charakterisierung der Kohlenstoff-Elektroden und Testroutinen für beschleunigte Elektrodenalterung

Die Vanadium-Redox-Flow-Batterie (VRFB) ist eine vielversprechende Technologie, um Speicherkapazität für eine Stundenreserve günstig bereitzustellen. In der VRFB wird ausschließlich Vanadium in vier Oxidationsstufen eingesetzt. Dies schließt die Kreuzkontamination der Redoxpaare aus und erhöht die Lebensdauer der Batterie. Nachteilig sind die Korrosivität des Elektrolyten und die damit verbundenen Materialanforderungen sowie die Selbstentladung der Batterie. Um die Materialentwicklung für alle Komponenten, d.h. Elektroden, Elektrolyt, Membran, Bipolarplatten und Dichtungen, voranzutreiben, müssen deren Degradationsprozesse im Betrieb verstanden werden. Darauf aufbauend sollen Verfahren entwickelt werden, um in anwendungsnahen Materialtests eine beschleunigte Alterung herbeizuführen. Die Ergebnisse sollen in ein Modell eingepflegt werden, um die Kosten auf die Lebensdauer eines Systems abzuschätzen und um die Betriebsweise so anzupassen, dass die Lebensdauer erhöht wird. Die Komponenten von Vanadium-Redox-Flow-Batterien (VRFB) werden einzeln und in ihrem Zusammenwirken auf ihr Degradationsverhalten untersucht. Dazu werden Alterungsprozesse identifiziert, Parameterabhängigkeiten definiert und daraus Protokolle erstellt. An Langzeit-Testständen gealterte Komponenten werden mit im Betrieb gealterten Komponenten von industriellen Partnern verglichen. Es werden Methoden zur gezielten und beschleunigten Alterung entwickelt. Die Degradation der Komponenten wird mit ex-situ und on-line Methoden untersucht. Es wird ein Modell erstellt, das Vorhersagen über die Langzeitstabilität und Kosten für VRFB-Systeme ermöglichen soll. Die Projektpartner bilden einen großen Teil der VRFB-Komponenten ab und den beteiligten Unternehmen werden wissenschaftliche Partner an die Seite gestellt. Die Projektpartner arbeiten interdisziplinär und übergreifend zusammen, so dass die Ergebnisse verifiziert werden können und eine breite Datenbasis zur Verfügung steht.

DegraBat - Degradationsprozesse in All-Vanadium-Redox-Flow-Batterien, Teilprojekt: Modellierung von Auswirkungen der Alterungserscheinungen von Materialien auf die Zelle und Qualifizierung von Dichtungsmaterialien

Die Vanadium-Redox-Flow-Batterie (VRFB) ist eine vielversprechende Technologie, um Speicherkapazität für eine Stundenreserve günstig bereitzustellen. In der VRFB wird ausschließlich Vanadium in vier Oxidationsstufen eingesetzt. Dies schließt die Kreuzkontamination der Redoxpaare aus und erhöht die Lebensdauer der Batterie. Nachteilig sind die Korrosivität des Elektrolyten und die damit verbundenen Materialanforderungen sowie die Selbstentladung der Batterie. Um die Materialentwicklung für alle Komponenten, d.h. Elektroden, Elektrolyt, Membran, Bipolarplatten und Dichtungen, voranzutreiben, müssen deren Degradationsprozesse im Betrieb verstanden werden. Darauf aufbauend sollen Verfahren entwickelt werden, um in anwendungsnahen Materialtests eine beschleunigte Alterung herbeizuführen. Die Ergebnisse sollen in ein Modell eingepflegt werden, um die Kosten auf die Lebensdauer eines Systems abzuschätzen und um die Betriebsweise so anzupassen, dass die Lebensdauer erhöht wird. Die Komponenten von Vanadium-Redox-Flow-Batterien (VRFB) werden einzeln und in ihrem Zusammenwirken auf ihr Degradationsverhalten untersucht. Dazu werden Alterungsprozesse identifiziert, Parameterabhängigkeiten definiert und daraus Protokolle erstellt. An Langzeit-Testständen gealterte Komponenten werden mit im Betrieb gealterten Komponenten von industriellen Partnern verglichen. Es werden Methoden zur gezielten und beschleunigten Alterung entwickelt. Die Degradation der Komponenten wird mit ex-situ und on-line Methoden untersucht. Es wird ein Modell erstellt, das Vorhersagen über die Langzeitstabilität und Kosten für VRFB-Systeme ermöglichen soll. Die Projektpartner bilden einen großen Teil der VRFB-Komponenten ab und den beteiligten Unternehmen werden wissenschaftliche Partner an die Seite gestellt. Die Projektpartner arbeiten interdisziplinär und übergreifend zusammen, so dass die Ergebnisse verifiziert werden können und eine breite Datenbasis zur Verfügung steht.

DegraBat - Degradationsprozesse in All-Vanadium-Redox-Flow-Batterien, Teilprojekt: Optimierung der Elektroden - Transfer in industrielle Praxis

Die Vanadium-Redox-Flow-Batterie (VRFB) ist eine vielversprechende Technologie, um Speicherkapazität für eine Stundenreserve günstig bereitzustellen. In der VRFB wird ausschließlich Vanadium in vier Oxidationsstufen eingesetzt. Dies schließt die Kreuzkontamination der Redoxpaare aus und erhöht die Lebensdauer der Batterie. Nachteilig sind die Korrosivität des Elektrolyten und die damit verbundenen Materialanforderungen sowie die Selbstentladung der Batterie. Um die Materialentwicklung für alle Komponenten, d.h. Elektroden, Elektrolyt, Membran, Bipolarplatten und Dichtungen, voranzutreiben, müssen deren Degradationsprozesse im Betrieb verstanden werden. Darauf aufbauend sollen Verfahren entwickelt werden, um in anwendungsnahen Materialtests eine beschleunigte Alterung herbeizuführen. Die Ergebnisse sollen in ein Modell eingepflegt werden, um die Kosten auf die Lebensdauer eines Systems abzuschätzen und um die Betriebsweise so anzupassen, dass die Lebensdauer erhöht wird. Die Komponenten von Vanadium-Redox-Flow-Batterien (VRFB) werden einzeln und in ihrem Zusammenwirken auf ihr Degradationsverhalten untersucht. Dazu werden Alterungsprozesse identifiziert, Parameterabhängigkeiten definiert und daraus Protokolle erstellt. An Langzeit-Testständen gealterte Komponenten werden mit im Betrieb gealterten Komponenten von industriellen Partnern verglichen. Es werden Methoden zur gezielten und beschleunigten Alterung entwickelt. Die Degradation der Komponenten wird mit ex-situ und on-line Methoden untersucht. Es wird ein Modell erstellt, das Vorhersagen über die Langzeitstabilität und Kosten für VRFB-Systeme ermöglichen soll. Die Projektpartner bilden einen großen Teil der VRFB-Komponenten ab und den beteiligten Unternehmen werden wissenschaftliche Partner an die Seite gestellt. Die Projektpartner arbeiten interdisziplinär und übergreifend zusammen, so dass die Ergebnisse verifiziert werden können und eine breite Datenbasis zur Verfügung steht.

DegraBat - Degradationsprozesse in All-Vanadium-Redox-Flow-Batterien, Teilprojekt: Entwicklung von Testzellen zum Monitoring von Alterungsprozessen

Die Vanadium-Redox-Flow-Batterie (VRFB) ist eine vielversprechende Technologie, um Speicherkapazität für eine Stundenreserve günstig bereitzustellen. In der VRFB wird ausschließlich Vanadium in vier Oxidationsstufen eingesetzt. Dies schließt die Kreuzkontamination der Redoxpaare aus und erhöht die Lebensdauer der Batterie. Nachteilig sind die Korrosivität des Elektrolyten und die damit verbundenen Materialanforderungen sowie die Selbstentladung der Batterie. Um die Materialentwicklung für alle Komponenten, d.h. Elektroden, Elektrolyt, Membran, Bipolarplatten und Dichtungen, voranzutreiben, müssen deren Degradationsprozesse im Betrieb verstanden werden. Darauf aufbauend sollen Verfahren entwickelt werden, um in anwendungsnahen Materialtests eine beschleunigte Alterung herbeizuführen. Die Ergebnisse sollen in ein Modell eingepflegt werden, um die Kosten auf die Lebensdauer eines Systems abzuschätzen und um die Betriebsweise so anzupassen, dass die Lebensdauer erhöht wird. Die Komponenten von Vanadium-Redox-Flow-Batterien (VRFB) werden einzeln und in ihrem Zusammenwirken auf ihr Degradationsverhalten untersucht. Dazu werden Alterungsprozesse identifiziert, Parameterabhängigkeiten definiert und daraus Protokolle erstellt. An Langzeit-Testständen gealterte Komponenten werden mit im Betrieb gealterten Komponenten von industriellen Partnern verglichen. Es werden Methoden zur gezielten und beschleunigten Alterung entwickelt. Die Degradation der Komponenten wird mit ex-situ und on-line Methoden untersucht. Es wird ein Modell erstellt, das Vorhersagen über die Langzeitstabilität und Kosten für VRFB-Systeme ermöglichen soll. Die Projektpartner bilden einen großen Teil der VRFB-Komponenten ab und den beteiligten Unternehmen werden wissenschaftliche Partner an die Seite gestellt. Die Projektpartner arbeiten interdisziplinär und übergreifend zusammen, so dass die Ergebnisse verifiziert werden können und eine breite Datenbasis zur Verfügung steht.

NIP II - BePPel - Bipolarplatten für Brennstoffzellen und Elektrolyseure, Teilvorhaben E

Ziel des Gemeinschaftsprojektes BePPel ist die Definition und Standardisierung der Messung physikalischer Parameter und hier insbesondere elektrischer Leitfähigkeiten sowie Kontaktwiderstände (in-plane und through-plane) an graphitischen und metallischen Bipolarplatten in Niedertemperatur- (NT) und Hochtemperatur-Anwendungen (HT) in Brennstoffzellensystemen sowie in Elektrolysesystemen. Ziel des Teilvorhabens von Fraunhofer ist die Charakterisierung des Korrosionsverhaltens in Ex-situ-Tests und die Bestimmung von Kontaktwiderständen, der Materialbeständigkeit und der Stromflussverteilung. Das Teilvorhaben des Fraunhofer ISE gliedert sich in folgende Arbeitspakete: a) Elektrochemische Messungen b) Bestimmung der Kontaktübergangswiderstände c) Auslagerungsversuche Das Teilvorhaben des Fraunhofer ICT gliedert sich in folgende Arbeitspakete: d) Elektrochemische Messungen e) Bestimmung von in-plane und through-plane Leitfähigkeiten f) Untersuchung des Einflusses von polymerreichen Schichten bei spritzgegossenen Bipolarplatten g) Untersuchung der Relevanz von Leitfähigkeitsbestimmung entlang der Prozesskette zur Herstellung h) Untersuchungen zur Stromverteilung i) Erstellung eines Stromflussmodells und Ableitung geeigneter Kenngrößen für QS Messungen j) Validierung in Einzelzelltests.

NIP II - BePPel - Bipolarplatten für Brennstoffzellen und Elektrolyseure, Teilvorhaben C

Bipolarplatten für Brennstoffzellen und Elektrolyseure (BePPel): Für das Teilprojekt des ZSW liegt der Schwerpunkt auf der Charakterisierung von metallischen Bipolarplatten. Die physikalischen Eigenschaften metallischer Bipolarplatten werden stark von ihrer Oberfläche beeinflusst, wobei auch Oberflächenbeschichtungen eine Rolle spielen. Deshalb sind für die Charakterisierung metallischer Bipolarplatten insbesondere auch Analysemethoden zur Oberflächenuntersuchung relevant. Da sich die Bipolarplattenoberflächen während des Brennstoffzellenbetriebes stark ändern können, ist zur Charakterisierung und Qualitätssicherung metallischer Bipolarplatten auch eine Untersuchung des Alterungsverhaltens wichtig, was durch elektrochemische Korrosionsuntersuchungen sowie beschleunigte Alterungsuntersuchungen erfolgen kann. Die am ZSW entwickelten und zur Anwendung kommenden Methoden können großteils auch bei graphitischen Bipolarplatten verwendet werden. Am ZSW werden zur Charakterisierung der Bipolarplatten elektrochemische Messungen, schwerpunktmäßig Korrosionsuntersuchungen an metallischen Bipolarplatten, Kontaktwiderstandsmessungen mittels Druck-Zug-Prüfmaschine und prä- und post-Test Analysen mittels REM und oberflächensensitiver Analysemethoden durchgeführt. Außerdem sollen am ZSW mithilfe einer vorhandenen Apparatur zur künstlichen Alterung 'accelerated ageing' Versuche durchgeführt und die so künstlich gealterten Bipolarplatten ebenfalls mit der beschriebenen Analytik untersucht werden.

NIPII: Verbundvorhaben - Untersuchung und Entwicklung eines dezentralen Energienetzwerkes und eines hybriden Energiesystems mit einer neuen Generation von Hochtemperatur (HT)-PEM Brennstoffzellen für den Einsatz auf Hochsee-Passagierschiffen, NIPII: Verbundvorhaben - Untersuchung und Entwicklung eines dezentralen Energienetzwerkes und eines hybriden Energiesystems mit einer neuen Generation von Hochtemperatur (HT)-PEM Brennstoffzellen für den Einsatz auf Hochsee-Passagierschiffen

Für den zukünftigen Einsatz von Brennstoffzellen auf Schiffen sowie mobilen Anwendungen ist bei der HT-PEFC die Steigerung der Leistungsdichte von zentraler Bedeutung. In Pa-X-ell 2 liegt der Fokus auf der Analyse der Leistungslimitierung bestehender Systeme. Mit Hilfe von Impedanzspektroskopie können Optimierungspotenziale der Leistungsfähigkeit der Stacks identifiziert werden. Die Steigerung der Leistungsdichte wird beispielsweise durch die Entwicklung metallischer Bipolarplatten erreicht. Hierzu werden zwei verschiedene Produktionsverfahren hinsichtlich ihrer Eignung untersucht. Mittels geeigneter Analysemethoden erfolgt eine Optimierung der Prozessparameter bei der Herstellung. Durch experimentelle Arbeiten erfolgt der Nachweis der Einsatzfähigkeit. Zur Steigerung der Energiedichte, ist es erforderlich den Kraftstoff für die Brennstoffzellensysteme in reiner Form zu tanken und das Wasser für die Dampfreformierung aus den Abgasen der Brennstoffzelle zu generieren. Hierzu werden Simulationsarbeiten zur Integration und Optimierung eines Wasserrückgewinnungssystems durchgeführt. In diesem Kontext wird der Kraftstoff Methanol mit LNG verglichen.

NIPII: Verbundvorhaben - Untersuchung und Entwicklung eines dezentralen Energienetzwerkes und eines hybriden Energiesystems mit einer neuen Generation von Hochtemperatur (HT)-PEM Brennstoffzellen für den Einsatz auf Hochsee-Passagierschiffen, NIPII: Verbundvorhaben - Untersuchung und Entwicklung eines dezentralen Energienetzwerkes und eines hybriden Energiesystems mit einer neuen Generation von Hochtemperatur (HT)-PEM Brennstoffzellen für den Einsatz auf Hochsee-Passagierschiffen

1 2 3 4 5 6 7