API src

Found 90 results.

Vertikaler turbulenter Aerosolpartikeltransport über offenem Wasser und Eis in der zentralen Arktis während des Sommers - Aerosolpartikelquellen und -umwandlung in der arktischen marinen Grenzschicht

Das Projekt "Vertikaler turbulenter Aerosolpartikeltransport über offenem Wasser und Eis in der zentralen Arktis während des Sommers - Aerosolpartikelquellen und -umwandlung in der arktischen marinen Grenzschicht" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.In der Arktis ist aktuell die stärkste Temperaturerhöhung im Zuge des Klimawandels zu beobachten. Diese Tatsache beruht auf einer komplexen Kette von Prozessen und Rückkopplungen, in denen Aerosolpartikel durch ihren Einfluss auf Strahlungsbilanz und Wolkenbildung eine wesentliche Rolle spielen. Um die Auswirkungen der sich ändernden Eisbedeckung abschätzen zu können, müssen die Wechselwirkungen zwischen Ozean sowie Eis und der Atmosphäre besser verstanden werden. Grundsätzlich mangelt es besonders im Bereich des arktischen Ozeans an atmosphärischen Messungen, die zum Verständnis der Prozesse aber auch zur Vorhersage der zu erwartenden Änderungen dringend benötigt werden. Austauschprozesse zwischen Ozean/Eis und Atmosphäre sind in diesen Regionen ebenfalls wenig untersucht. Im Rahmen dieses Projektes sollen mithilfe der RV Polarstern vertikale Austauschprozesse oberhalb von Wasser und Eis im Detail betrachtet werden und damit verbundene Quellen für Aerosolpartikel lokalisiert werden. Dazu ist eine Reihe von kontinuierlichen Aerosolmessungen an Bord des Schiffes geplant, die die Anzahlgrößenverteilungen, optische Parameter (Streuung, Absorption), das Mischungsverhältnis von Partikeln, die schwarzen Kohlenstoff (BC) enthalten, die Konzentration von eisbildenden Partikeln (INP) sowie die chemische Zusammensetzung der Aerosolpartikel umfassen. Weiterhin werden in den im Sommer häufig auftretenden Nebelphasen Nebelwasserproben gesammelt, sowie während der gesamten Kampagne täglich Wasserproben aus dem Ozean entnommen. Diese Proben werden nach der Kampagne auf die Konzentration von INP und BC untersucht. Weiterhin sollen erstmals mit Laser-Inkandeszenz Methoden die BC-Konzentrationen sowohl im luftgetragenen Aerosol als auch in Wasserproben gemessen werden. Zur Vorbereitung der Wasserproben mit hoher Salinität werden neuartige Methoden angewandt. Durch diese Kombination der parallelen Untersuchung von Bestandteilen in Luft und Wasser sollen Transport- und Austauschprozesse dieser Aerosolpartikel quantifiziert werden. Während langsamer Fahrt des Schiffes oder Drift mit dem Eis wird Messtechnik zur Bestimmung von vertikalen Partikelflüssen am vorderen Ausleger des Schiffes eingesetzt. Damit werden Zeitreihen des Windvektors und der Partikelkonzentration erfasst, mit deren Hilfe im Anschluss der vertikale, turbulente Partikelfluss über unterschiedlichen Oberflächen durch die Eddy Kovarianz Methode bestimmt werden soll. Kombiniert mit diesen Messungen wird die Konzentration der INP erfasst, um deren Ursprung und Quellen lokalisieren zu können. Ein weiteres Messsystem, das aus einer eindimensionalen Windmessung und einem Partikelzähler besteht, wird am Kranhaken des vorderen Auslegers befestigt und bestimmt Vertikalprofile der Partikelkonzentration, aus denen ebenfalls eine Abschätzung des Vertikalflusses von Partikeln möglich ist. Diese Methoden sind erprobt und etabliert, wurden nur bisher noch nie in dieser Form über dem arktischen Ozean angewendet.

2023- German Informative Inventory Report

Welcome to the German Informative Inventory Report 2023 (IIR 2023). This report covers the preparation, maintenance, and improvement of the German air pollutant emission inventory. Emission estimates are provided for the timeseries from 1990 to 2021 , with exceptions for Particulate Matter ≤2.5 and ≤10µm (PM 2.5 and PM 10 ; as of 1995) and Black Carbon (BC; as of 2000) For faster navigation please refer to the TABLE OF CONTENTS . And in case you prefer to work with a .pdf file: .

Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin

Das Projekt "Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Großflughäfen sind eine relevante Quelle kurzlebiger Luftschadstoffe. Ihr quantitativer Beitrag zur gesundheitlichen Belastung der Anwohner ist besonders dort mit Unsicherheiten behaftet, wo auch andere Verursacher existieren, bspw. in Großstädten. Feldmessungen und Modellierungen sollen den Einfluss der Emissionen des Großflughafens Berlin Tegel (TXL) und BER auf die räumliche Verteilung folgender Schadstoffe vor und nach Schließung im Herbst 2020 untersuchen: Ultrafeinstaub (UFP) und Black Carbon (Ruß) sowie PM10, PM2,5 und NO2. Es werden drei stationäre Messstationen über ca. 2 Jahre im Umfeld von BER betrieben. In Bezug auf UFP (Partikelanzahlkonzentration und -verteilung) werden der Gesamtanteil und der nichtflüchtige Anteil gemessen. Zusätzlich werden mobile Messsysteme in mehrwöchigen Messkampagnen die räumliche Verteilung der Schadstoffe in der Abluftfahne von BER bestimmen. Die Ausbreitungsmodellierung wird mit einem Raster von 500 m für den Großraum Berlin sowie feiner aufgelöst (ca. 200 m) im Umfeld TXL und zum Teil für Schönefeld (SXF) bzw. den geplanten Berliner Großflughafen BER durchgeführt werden. Bereits entwickelte modulare Modellansätze (u.a. mittels LASPORT) sollen genutzt werden: Ausbreitung von nichtflüchtigen UFP im Umfeld von Flughäfen aufgrund Straßenverkehrs- und Flughafenaktivitätsdaten mit Lagrange Modellen. Hintergrundbelastung: Chemietransportmodelle inkl. Partikelklassen bzw. -moden. Für jedes Rasterquadrat wird ein Jahresmittelwert (1 h Basis) erstellt inkl. Herkunftsanteile. Für die Standorte der Messstationen und für Messorte der Kohorten in der BEAR-Studie werden 1h-Zeitreihen bereitgestellt. Zur Validierung des Hintergrundes werden Daten der UBA Station Neuglobsow herangezogen. Außerdem beteiligt: Senatsverwaltung für Umwelt, Verkehr und Klimaschutz: für Umgebung Flughafen, Flughafen Berlin Brandenburg (FBB) für SXF Ein Begleitkreis wird gebildet.

Sonderforschungsbereich (SFB) 806: Unser Weg nach Europa: Kultur-Umwelt Interaktion und menschliche Mobilität im Späten Quartär, Teilprojekt E07 (D06): Schwarzer Kohlenstoff als Indikator für Mensch-Umwelt Interaktionen in den letzten 190.000 Jahren

Das Projekt "Sonderforschungsbereich (SFB) 806: Unser Weg nach Europa: Kultur-Umwelt Interaktion und menschliche Mobilität im Späten Quartär, Teilprojekt E07 (D06): Schwarzer Kohlenstoff als Indikator für Mensch-Umwelt Interaktionen in den letzten 190.000 Jahren" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinische Friedrich-Wilhelms-Universität Bonn, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES), Bereich Bodenwissenschaften, Allgemeine Bodenkunde und Bodenökologie.Teilprojekt E7 hat in Phase 1 (als F3) Methoden zur Analysen von schwarzem Kohlenstoff entwickelt und, in Phase 2 (als D6), auf verschiedene geoarchäologische Archive angewendet, um Paläoumwelt- und menschliche Einflüsse auf die lokale Brandgeschichte zu rekonstruieren. Die Feuersignale korrelieren mit menschlicher Aktivität und Paläoklima . Ziel ist, die Feuersignale aus den Geoarchiven und archäologischen Fundstellen des SFB von NE-Afrika bis zum Balkan zwischen 190-15 kaBP zu vernetzen, auch durch räumliche Modellierung der Transportweiten von Brandrückständen. Wir erwarten, dass die Interaktion zwischen Feueraktivität, Paläoklima und menschlicher Mobilität sich entlang des Korridors von Afrika nach Europa verändert. Die Synthese der natürlichen und menschlichen Feuergeschichte wird helfen, die Rolle von Feuern für unseren 'Unseren' Weg nach Europa zu verstehen.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Physikalische und chemische Eigenschaften von Wolkenpartikelresiduen und eisnukleierenden Partikeln in Verbindung mit Wolken in hohen geographischen Breiten vom Mischphasen- bis zum Zirrenniveau (HALO 2020, CIRRUS-HL)

Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Physikalische und chemische Eigenschaften von Wolkenpartikelresiduen und eisnukleierenden Partikeln in Verbindung mit Wolken in hohen geographischen Breiten vom Mischphasen- bis zum Zirrenniveau (HALO 2020, CIRRUS-HL)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Es wird vermutet, dass Zirruswolken in hohen geographischen Breiten (arktische Zirren), einen positiven „Cloud Radiative Effect“ (CRE) haben und somit zum Phänomen der "Arctic Amplification" beitragen. Das Vorzeichen und die Stärke des CRE arktischer Zirren hängt von deren mikrophysikalischen Eigenschaften, d.h. der Eispartikelkonzentration, dem effektiven Eispartikelradius und dem Eiswassergehalt (IWC), ab. Diese Parameter werden hauptsächlich durch den Eisbildungsprozess (heterogen vs. homogen) und durch den Bildungspfad (in-situ vs. flüssiger Ursprung) bestimmt. Dies impliziert insbesondere für Zirren flüssigen Ursprungs die Beteiligung von eisnukleierenden Partikeln (INP), was deren Häufigkeit, Eigenschaften und Quellen zu Schlüsselfaktoren für die Bildung, die mikrophysikalischen und Strahlungseigenschaften von Zirren in hoher Breiten macht. Informationen über INP in hohen geographischen Breiten im Allgemeinen und in größeren Höhen im Besonderen, extrem rar. Im Rahmen der HALO-Mission CIRRUS-HL wollen wir daher das Wissen hinsichtlich arktischer INP über a) die Charakterisierung von Eispartikel- (IPR) und Wolkentröpfchenresiduen (CPR, Summe aus IPR und Tröpfchenresiduen) in arktischen Zirren und Mischphasenwolken, und b) die vertikal aufgelöste Messung (Mischphase bis Zirrusniveau) von Hochtemperatur INP (> -30°C) außerhalb von Wolken, erweitern. Für die geplanten Untersuchungen werden der HALO-CVI („Counterflow Virtual Impactor“) und der Aerosolpartikelfiltersammler HERA verwendet werden. Hinter dem HALO-CVI werden Instrumente zur physikalischen (Anzahl der Konzentrationen, Partikelgrößenverteilung, BC-Konzentration) und chemischen (Einzelpartikelzusammensetzung, MPI-C) Charakterisierung der IPR und CPR betrieben. Die von HERA gesammelten Filterproben werden im Anschuss an die Kampagne in den TROPOS-Laboratorien hinsichtlich der physikalischen INP-Eigenschaften (Anzahlkonzentrationen und Gefrierspektren) sowie der chemischen Zusammensetzung der Aerosolpartikel analysiert.Bei In-Wolken-Messungen werden der HALO-CVI und HERA kombiniert werden. So können die INP, innerhalb der gesammelten IPR (Zirren) und Wolkentropfenresiduen (CPR, in Mischphasenwolken) identifiziert, quantifiziert und charakterisiert werden. Diese INP könnten potenzielle Vorläufer von Zirrus mit flüssigem Ursprung in hohen Breiten sein.In Verbindung mit den Ergebnissen der im Rahmen von CIRRUS-HL durchgeführten in-situ Messungen wolkenmikrophysikalischer Eigenschaften, sowie der Analyse von Rückwärtstrajektorien der untersuchten Luftmassen werden wir a) bzgl. der Häufigkeit und der Eigenschaften von INP ein bisher einmaliges Schließungsexperiment (innerhalb und außerhalb der Wolke) durchführen, b) das Wissen über die raumzeitliche Verteilung, die Eigenschaften und die Quellen von INP signifikant erweitern und c) tiefe Einblicke in INP-Effekte auf die Bildung und die mikrophysikalischen Eigenschaften von Zirruswolken in hohen geographischen Breiten erhalten.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Aerosoleigenschaften in der UTLS über der südasiatischen Pazifikregion: Partikelnukleation und -wachstum, Hygroskopizität und Zusammensetzung

Das Projekt "Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Aerosoleigenschaften in der UTLS über der südasiatischen Pazifikregion: Partikelnukleation und -wachstum, Hygroskopizität und Zusammensetzung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Um die Auswirkungen atmosphärischer Aerosole auf Wolken und Klima zu verstehen, ist ein solides Verständnis der Quellen, Konzentration und Eigenschaften von Aerosolen in der vertikalen Struktur der Atmosphäre von grundlegender Bedeutung. Insbesondere die mechanistischen Details der Nukleation der oberen Troposphäre/unteren Stratosphäre und des anschließenden Wachstums sind höchst ungewiss. Daher sind Messungen in Regionen mit hoher konvektiver Aktivität erforderlich, um diese Prozesse aufzulösen und die entsprechende Unsicherheit in unserem grundlegenden Verständnis dieses Aerosolkreislaufs im Erdsystem zu verringern. Eine Region von besonderem Interesse ist der Indo-Pacific Warm Pool, der ein großes Gebiet mit konstant hoher Meeresoberflächentemperatur und häufiger Tiefenkonvektion umfasst. Hiermit beantrage ich, mikrophysikalische und chemische Aerosoleigenschaften während der ab Jan/Feb 2024 geplanten CAFE-Pacific-Mission in der Indopazifik-Region nordwestlich und nordöstlich von Cairns, Australien, zu messen. Ich schlage vor, vollständige Aerosolgrößenverteilungen von 2 nm bis 2 µm sowie CCN-Konzentration zu messen, um die Wachstumspfade der Partikel in den CCN-Bereich zu erfassen. Um zwischen verschiedenen Aerosolquellen zu unterscheiden und den Grad der Luftverschmutzung zu beurteilen, werde ich Rußpartikel (BC) messen. Schließlich wird die Sammlung von Aerosolpartikeln an Impaktorproben für die mikrospektroskopische Einzelpartikelanalyse eingehende Untersuchungen relevanter Partikelalterungs- und Mischprozesse ermöglichen.

Entwicklung eines Online-Parametrisierungsansatzes zur Vorhersage der Hygroskopizität von organischem Aerosol in der Umgebung auf der Grundlage von hochauflösenden AMS-Messungen

Das Projekt "Entwicklung eines Online-Parametrisierungsansatzes zur Vorhersage der Hygroskopizität von organischem Aerosol in der Umgebung auf der Grundlage von hochauflösenden AMS-Messungen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Verschiedene atmosphärische Prozesse werden durch die Wasseraufnahmefähigkeit (Hygroskopizität) von Aerosolpartikel angetrieben, wie z.B. die Lichtstreuung der Partikel, die Bildung von Wolkentröpfchen, die Aktivierung von Wolkenkondensationskeimen (CCN), die Veränderung des hydrologischen Zyklus sowie der Strahlungsantrieb der Wolken. Trotz seiner entscheidenden Rolle für die Atmosphäre und das Klima gibt es immer noch eine große Diskrepanz im Wissen über den Beitrag des organischen Aerosols, das einen größeren Teil der Submikrometer-Partikelmassenkonzentration darstellt, zur gesamten Hygroskopizität. Der folgende Projektantrag schlägt einen ganz neuen Ansatz zur Parametrisierung der hygroskopischen Eigenschaften von organischen Aerosolpartikeln vor, der ein chemisches Online-Funktionskonzept verwendet, das auf der Analyse der organischen Massenspektren aus den Messungen des High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) basiert. Die Entwicklung dieser Parametrisierung wird auf einer Kombination von Humidified Hygroscopic Tandem Differential Analyzer (HTDMA) und HR-ToF-AMS Messungen in einem dualen, aber komplementären Ansatz basieren. Dazu wird ein intensives Laborscreening von chemischen Verbindungen mit gezielten funktionellen Gruppen und einer Mischung aus verschiedenen organischen Standards durchgeführt werden. Gleichzeitig wird ein maschineller Lernansatz auf der Grundlage früherer TROPOS-Feldkampagnen durchgeführt werden, der Messungen beider Instrumente integriert. Ein Vergleich zwischen den beiden Ansätzen wird für die endgültige Validierung in der Studie durchgeführt werden. Diese Parametrisierung wird dann in zwei Feldkampagnen validiert, die jeweils einer bestimmten Art von organischem Aerosol gewidmet sind: eine von biogenem Aerosol dominierte Umgebung in Melpitz (Deutschland) und eine von städtischem Aerosol dominierte Umgebung in SIRTA (Frankreich), wo beide Instrumente im Rahmen dieses Projekts eingesetzt werden sollen. Die Online-Hygroskopizität des Umgebungsaerosols wird durch die Kombination von HR-ToF-AMS (organisches und anorganisches Aerosol) und optischen Messungen des Aethalometers (äquivalenter schwarzer Kohlenstoff) abgeschätzt und dann mit der vom HTDMA gemessenen verglichen. Unter Ausnutzung der Vorteile der hochauflösenden und einheitlichen Massenspektrenauflösung des HR-ToF-AMS und des Vorhandenseins des Aerosol Chemical Speciation Monitor (ACSM) an beiden ausgewählten Feldstandorten wird die Methode auch für das ACSM optimiert. Infolgedessen wird eine automatische Routine für beide Instrumente (HR-ToF-AMS und ACSM) entwickelt, die in das ACSM-Netzwerk des Aerosols, Clouds, and Trace gases Research Infrastructure Network (ACTRIS) implementiert wird, um eine einzigartige Möglichkeit für eine zeitnahe und langfristige Messung der Aerosol-Hygroskopizität über Europa zu bieten.

Mobilisierung und Immobilisierung von Schadstoffen in Muellverbrennungsschlacken im realistischen Massstab

Das Projekt "Mobilisierung und Immobilisierung von Schadstoffen in Muellverbrennungsschlacken im realistischen Massstab" wird/wurde ausgeführt durch: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, Institut für Technische Chemie, Bereich Wasser- und Geotechnologie, Technische Mineralogie.Wissenschaftliche Aufklaerung des kurz- und langfristigen Verhaltens von Schadstoffen bei der offenen Verwendung von Reststoffen mit dem Ziel, das Nutzungspotential zu quantifizieren. Dazu werden organische und anorganische Schadstoffe in Muellverbrennungsschlacken charakterisiert und spezifiziert, anhand geochemischer Modellrechnungen die thermodynamischen Existenzbereiche von Schwermetallspecies in Waessern ermittelt, die wesentlichen Mobilisierungsmechanismen untersucht und diese mit kapazitiven Groessen wie Saeure- und Redoxpufferkapazitaet gekoppelt. Bisher konnte an drei MVA-Schlacken durch TG- und DTA-Untersuchungen eine Speziation des Kohlenstoffs in organisch gebundenen, karbonatischen und graphitaehnlichen (black carbon) Kohlenstoff erreicht werden. Die Identifikation organischer Bestandteile gelang nach Soxhlet-Extraktion mit einer Reihe an Loesemitteln sinkender Polaritaet und dem Einsatz von GC-MS und HPLC-Technik. Damit konnten erstmals Alkane, Fettsaeuren, Phenole und Phthalate im mg/kg-Bereich in MVA-Schlacken nachgewiesen werden. Die Ionenchromatographie eignet sich nach Elimination von SO4 hoch 2minus, Cl minus fuer die Identifikation pelarer, org. Saeuren. Am Beispiel des Kupfers konnte fuer ein Schwermetall eine Speziation durchgefuehrt werden. Dabei wurden sechs Kupferphasen (Cu(O), Cu(l)-Oxid, Cu(II)-Oxid, Cu-Legierungen und basische Kupferkarbonate) identifiziert.

Klimakammer (Phytotron)

Das Projekt "Klimakammer (Phytotron)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Hochschule für Nachhaltige Entwicklung Eberswalde (FH), Fachbereich für Wald und Umwelt.Die beantragte Klimakammer wird im Rahmen des vom MWFK Brandenburg seit 2009 geförderten Verbund-Forschungsvorhabens BIOBRA und zukünftiger Forschungsvorhaben eingesetzt. In BIOBRA arbeitet eine interdisziplinäre Forschergruppe von grundlagenorientierten Nachwuchswissenschaftlern/lnnen des MPI für Kolloid- und Grenzflächenforschung in Potsdam (Prof. Dr. M. Antonietti) und angewandten Wissenschaftlern/Innen der FH Eberswalde (Prof. Dr. Murach) zusammen. Durch die Verschneidung der innovativen Forschungsbereiche der hydrothermalen Karbonisierung (HTC-Forschung des Prof. Antonietti 2008 ausgezeichnet mit dem 'ERC Advanced Grant' der EU) und der Agrarholzproduktion (BMBF-Verbund-Forschungsvorhaben DENDROM des Prof. Murach 2007 in die BMBF-Hightechstrategie aufgenommen) soll der Einsatz der durch hydrothermale Karbonisierung aus Abfallstoffen gewonnenen 'Biokohle' zur Bodenverbesserung (Nährstoff- und Wasserspeicherung) degradierter Standorte und zur C-Sequestrierung am Beispiel der Agrarholzproduktion (Anbau schnellwachsender Baumarten im Kurzumtrieb) untersucht werden.Durch dieses Projekt wird die Agrarholzforschung der FH Eberswalde um einen experimentellen Ansatz erweitert, mit dem sie einen Beitrag zu den neuen, internationalen Forschungsschwerpunkten 'Biochar' / 'Black Carbon' / 'Terra Preta' leisten kann.Die Klimakammer soll Schnelltests zur Optimierung der verschiedenen Biokohlen als Bodenzusatzstoff für Pappel- und Weidenstecklingen unter standardisierten Umweltbedingungen ermöglichen.

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Die Biogeochemie von gelöstem organischem Material in hydrothermalen Sedimenten des Guaymas-Beckens

Das Projekt "Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - Integrated Ocean Drilling Program/Ocean Drilling Program (IODP/ODP), Teilprojekt: Die Biogeochemie von gelöstem organischem Material in hydrothermalen Sedimenten des Guaymas-Beckens" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Carl von Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres.Das primäre Forschungsziel des Projekts ist das Verständnis der biotischen und abiotischen Prozesse, welche die molekulare Zusammensetzung von gelöstem organischem Material (engl. DOM) in tiefen, hydrothermal beeinflussten Sedimenten bestimmen. Hierzu steht uns bereits ein umfassender Satz von Porenwasser- und Sedimentproben aus dem Guaymas-Becken zur Verfügung, die im Rahmen der IODP-Expedition 385 (Sep. - Nov. 2019) erbohrt wurden. Die Proben wurden aus bis zu 500 Meter langen Bohrkernen von acht Bohrlokationen gewonnen, die unterschiedliche hydrothermale Gradienten aufweisen. Durch die Bestimmung der molekularen Zusammensetzung von Porenwasser-DOM und Wasser-extrahierbarem organischem Material aus dem Sediment sollen deren hydrothermale und mikrobielle Überprägung erfasst werden. Mit Hilfe von ultrahochauflösender Massenspektrometrie (FT-ICR-MS), modernen molekularbiologischen Methoden und Kohlenstoff-Isotopen-Analyse sollen aktuelle Wissenslücken zu den molekularen Eigenschaften von DOM in tiefen Sedimenten geschlossen werden. Wir werden 1) die molekulare Zusammensetzung von DOM in Organik-reichen, hydrothermal geprägten Sedimenten im Vergleich zu unbeeinflussten Sedimenten charakterisieren und 2) die Verbindung zwischen der molekularen Zusammensetzung des DOM mit dem mikrobiellen Stoffwechsel in der tiefen Biosphäre entlang von Temperatur- und Redoxgradienten entschlüsseln. Die Ergebnisse sollen zudem mit Proben aus der Wassersäule verglichen werden, die während einer FS Atlantis-Ausfahrt zum Guaymas-Becken im Jahr 2018 gewonnen wurden, um den Transport von hydrothermalen DOM in die Tiefsee zu untersuchen. Im Rahmen des Projekts werden die folgenden Hypothesen getestet: I) Die hydrothermale Aufheizung tiefer Sedimente erzeugt und setzt große Mengen von reaktivem und refraktärem DOM frei, II) Hydrothermales thermogenes DOM (engl. dissolved black carbon, DBC) trägt zur stabilen Kohlenstoff-Isotopensignatur mariner Prägung und zum Radiokarbonalter des refraktären ozeanischen DBC bei, und III) die Struktur der mikrobiellen Gemeinschaft in der Tiefen Biosphäre wird durch die geochemischen und thermalen Gradienten beeinflusst und hängt mit spezifischen reaktiven, hydrothermal erzeugten DOM-Verbindungen zusammen. Insgesamt bietet das Projekt die einmalige Gelegenheit, die Biogeochemie von DOM entlang hydrothermaler Gradienten in tiefen Sedimenten, aber auch im Übergang von Lithosphäre zur Hydrosphäre zu untersuchen.

1 2 3 4 57 8 9