Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg. Das vorliegende Punktshape beinhaltet die Standorte zu den Messstellen der Bodendauerbeobachtungsflächen im Land Brandenburg. Die Bodendauerbeobachtung ist ein Instrument zur langfristigen Überwachung von Veränderungen des Zustandes und der Funktionen des Bodens im Sinne des Bundesbodenschutzgesetzes bzw. weiterer untergesetzlicher Regelwerke. Die Bodendauerbeobachtung ist dabei nicht isoliert, sondern als zentrales Element einer integrierten Umweltbeobachtung zu betrachten. Ziele der Boden- dauerbeobachtung sowohl brandenburgspezifisch als auch bundesweit sind a) die Erfassung des aktuellen Zustandes der Böden, b) die langfristige Überwachung von Bodenveränderungen und c) die Ableitung von Prognosen für die zukünftige Entwicklung der Böden. Als Sachdaten sind neben der Bezeichnung der Bodendauerbeobachtungsfläche auch Angaben zur Nutzungsart, der naturräumlichen Haupt-Einheitsgruppe, dem Bodenausgangsgestein, dem Bodentyp, der Bodenart des Oberbodens sowie der Kategorie für deren Auswahl hinterlegt. Aggregierte und qualitätsgeprüfte Messdaten werden zu einem späteren Zeitpunkt ergänzt. Hinweis: Die Lage der Standorte wurde auf ganze km gerundet und entspricht daher nicht der tatsächlichen Lage der Bodendauerbeobachtungsflächen. Der Datenbestand beinhaltet die Standorte (Punktdaten) zu Messstellen der Bodendauerbeobachtung des Landes Brandenburg.
Für die Bewertung der Bodenteilfunktion „Ausgleichsmedium für stoffliche Einwirkungen“ wird u.a. das Kriterium „Filter und Puffer für Schadstoffe“ herangezogen. Unter „Filter und Puffer für Schadstoffe“ wird die Fähigkeit des Bodens verstanden, gelöste oder suspendierte Stoffe von ihrem Transportmittel zu trennen. Die Fähigkeit kann aus mechanischen oder physikalisch-chemischen Filtereigenschaften abgeleitet werden. Böden nehmen mit der Deposition aus der Luft oder direkt durch anthropogenen Auftrag Stoffe auf, verlagern und speichern diese vorrangig in den Bodenporen. Je nach Bodeneigenschaft variiert das Speicher- oder Filterpotential. Die Bewertung des Kriteriums „Filter und Puffer für Schadstoffe“ erfolgt durch die Beurteilung der potenziellen Kationenaustauschkapazität sowie der Luftkapazität des Bodens bis in die Bodentiefe des effektiven Wurzelraumes. Die Kenndaten hierfür sind: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, Luftkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung werden die Horizont- und Schichtdaten der Leitprofile des FIS Boden herangezogen. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung wird die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für das Wasserspeichervermögen relevant sind.
Für die Bewertung der Bodenteilfunktion „Bestandteil des Wasserkreislaufs Lebensraum“ wird u.a. das Kriterium „Wasserspeichervermögen des Bodens“ herangezogen. Böden nehmen Niederschlagswasser auf und speichern es in ihren Bodenporen. Damit haben sie einen wesentlichen Einfluss auf den Wasserhaushalt. Ein hohes Wasserspeichervermögen zeichnet Böden als besonders schutzwürdig aus. Die Bewertung des "Wasserspeichervermögens" erfolgt durch die Beurteilung der nutzbaren Feldkapazität des potentiellen Wurzelraumes bis ein eine Bodentiefe von max. 1,5 Meter. Die Kenndaten hierfür sind: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, nutzbare Feldkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung des Wasserspeichervermögens werden Kartierungsdaten (Leitprofildaten) des FIS Boden des Freistaates Sachsen herangezogen. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung wird die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für das Wasserspeichervermögen relevant sind.
Der Bewertung der Bodenteilfunktion „Lebensraum“ liegt u.a. das Kriterium „Natürliche Bodenfruchtbarkeit“ zu Grunde. Unter Natürliche Bodenfruchtbarkeit wird die natürliche Produktionsfähigkeit (Ertragsfähigkeit) des Bodens in seiner Funktion für höhere Pflanzen verstanden. Hierbei bleibt unberücksichtigt inwieweit die Ertragsleistung von der Bewirtschaftung und Pflanzenart abhängt. Die Bewertung der "Natürlichen Bodenfruchtbarkeit" erfolgt durch die Beurteilung der nutzbaren Feldkapazität im effektiven Wurzelraum. Die Kenndaten hierfür sind u.a.: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, nutzbare Feldkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung der Bodenfruchtbarkeit werden die Horizont- und Schichtdaten der Leitprofile des FIS Boden herangezogen. Zusätzlich wurde die Waldfläche und die Grünlandfläche für die Bodenbewertung integriert. Böden unter Waldnutzung erhalten einen Zuschlag der Durchwurzelungstiefe, Grünlandböden erhalten einen Abschlag. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung werden die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für die landwirtschaftliche Ertragsleistung relevant sind.
Die Datenerhebung der Bodenschätzung geht auf das Gesetz über die Schätzung des Kulturbodens vom 16. Oktober 1934 zurück. Ziel der Gesetzgebung war neben der Erstellung einer gerechten Besteuerungsgrundlage für landwirtschaftliche Betriebe gleichzeitig eine allgemeine bodenkundliche Grundinventur für Aufgaben aller weiteren Bodennutzungsplanungen. In der Praxis der Bodenschätzung werden in einem Raster von 50 mal 50 Meter jeweils Bohrstockproben bis 1 Meter Tiefe genommen. Merkmale und Eigenschaften des Profils, wie z.B. Bodenart, Humus- und Kalkgehalt, Hydromorphiemerkmale etc. werden aufgenommen. Es folgt die Zusammenfassung ähnlicher Einzelbohrungen zu Bodenarealen sowie die inhaltliche Dokumentation durch flächenrepräsentative bestimmende Grablochbeschreibungen. Auf der Feldschätzungskarte sind die Lagepunkte und Flächengrenzen dokumentiert, die Profilbeschriebe sind in Schätzungsbüchern notiert. Geführt und vorgehalten werden die Daten der Bodenschätzung von der niedersächsischen Vermessungs- und Katasterverwaltung im Amtlichen Liegenschaftskatasterinformationssystem (ALKIS). Auf Grundlage des Bodenschätzungserlasses (Runderlass des Niedersächsischen Ministers des Innern vom 20. 5. 1970) wurden seit den 70er Jahren vom damaligen NLfB Bodenkarten auf Grundlage der Bodenschätzung im Maßstab 1:5.000 als Druckausgabe (DGK5Bo) herausgegeben. Mit der Einführung des Kartenservers des LBEG (NIBIS) und Präsentation der Bodenschätzungsdaten im Kartenserver wurden Erstellung und Druck der DGK5Bo eingestellt. Im Schätzungsrahmen der Bodenschätzung sind die Böden nach Bodenart, Zustandsstufe und Entstehung in sogenannte Bodenklassen unterteilt. Die Klassenzeichen geben einen ersten Überblick über den bodenartlichen Profilaufbau, die Bodenentwicklung und den Wasserhaushalt. Mit den Wertzahlen des Schätzungsrahmens wird die natürliche Ertragsfähigkeit der Böden auf der Grundlage des Bodenschätzungsgesetzes geschätzt. Das LBEG bietet eine Darstellung der Klassenzeichen der Bodenschätzung als Kartenplot im Maßstab 1:5.000 (BS5) an. Zu beziehen sind die Kartenplots über die Internetseite des LBEG.
Plastik wurde in einer Vielzahl von Umweltkompartimenten nachgewiesen, überwiegend als Mikroplastik, d.h. Kunststoffteile kleiner als 5 mm. Erste Untersuchungen wurden in marinen und aquatischen Systemen durchgeführt; Böden sind hingegen erst kürzlich in Bezug auf Mikroplastik in den Fokus gerückt, wobei Daten zeigen, dass es sich um eine verbreitete Kontamination der Böden handelt, mit potenziellen Folgen für bodenphysikalische, -chemische und -biologische Parameter. Angesichts der Vielzahl von Eintragspfaden, zu denen Plastikmüll, Kompost, Ablagerung aus der Luft und Straßen gehören, ist davon auszugehen, dass Mikroplastik in Böden der Biodiversitäts-Exploratorien vorhanden ist. Unsere Forschung hat zwei Ziele: Erstens wollen wir wissen, ob Mikroplastik (Vorhandensein und/oder Typ) die Intensität der Landnutzung widerspiegeln kann. Dafür werden wir Böden aus allen 150 EPs im Grünland beproben und mit Extraktions- und Identifikationsmethoden (Fourier-Transform-Infrarot-Spektroskopie-Mikroskopie) auf Mikroplastikgehalt, -art und -zusammensetzung untersuchen. Wir können diese Daten dann mit Komponenten der Landnutzungsintensität (LUI) sowie mit Bodeneigenschaften verknüpfen. Zweitens wollen wir die Auswirkungen einer experimentellen Mikroplastik-Zugabe im Feld entlang des Landnutzungsgradienten testen. Wir werden dies mit dem Einsatz und der Wiederentnahme (nach einem Jahr) von kleinen Mesh-Beuteln mit Mikroplastik-kontaminiertem Boden angehen, die in allen VPs im Grünland vergraben werden (mit dem Boden der jeweiligen VPs). Wir verwende hierfür Polyesterfasern, von denen wir bereits wissen, dass sie klare und konsistente Auswirkungen auf bodenphysikalische Eigenschaften und Bodenprozesse haben. Unsere Messvariablen umfassen pilzbezogene Bodenprozesse (Zersetzung, Bodenaggregation) und Pilz-Lebensgemeinschaften, die mittels Illumina MiSeq Hochdurchsatzsequenzierung erfasst werden. Mit unserem Feldversuch wollen wir testen, wie sich Mikroplastik-Effekte zwischen Bodenart und Umweltkontext sowie der Intensität der Landnutzung unterscheiden. Alle experimentellen Objekte werden anschließend aus dem Feld entfernt, um sicherzustellen, dass es keine dauerhafte Kontamination der Exploratorien-Böden gibt. Da wir in diesem Bereich nur einen Mikroplastik-Typ verwenden werden und die Mikroplastik-Verschmutzung aber ein vielschichtiges Thema ist, werden wir auch ein komplementäres Laborexperiment durchführen, bei dem wir nur einen Bodentyp pro Exploratorium verwenden, aber zusätzlich zu den Mikrofasern eine Reihe von verschiedenen Mikroplastik-Typen testen. Insgesamt wird dieses Projekt Einblicke in die Verbreitung und Wirkung von Mikroplastik in Böden liefern, indem sie die einzigartige Fülle der für die Exploratorien verfügbaren Informationen nutzt und gleichzeitig eine neue Variable bietet, die für andere Forscher (z.B. in Syntheseprojekten), aber auch für Stakeholder von Interesse sein kann.
Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
1. Untersuchung des Einflusses des Ausgangsgesteins und der Bodenart, des Humusgehaltes, der Witterungsverhaeltnisse sowie der mineralischen N-Duengung auf die Mineralisation der organischen Substanz des Bodens. 2. Pruefung der Verlagerung und des Austrags von Nitrat-Stickstoff. 3. Untersuchung der Zusammenhaenge zwischen Stickstoffangebot im Boden und der N-Aufnahme durch die Rebe. - Die o.g. Zielsetzungen sollen in einem 3-faktoriellen Versuch mit folgenden Faktoren geprueft werden: Faktor A: Bodenausgangsgesteine: 1. Buntsandstein, 2. Muschelkalk, 3. Gipskeuper. Faktor B: 1. ca. 1 v.H. Humus, 2. ca. 2 v.H. Humus. Faktor C: 1. 0 kg N/ha, 2. 120 kg N/ha. - Die Versuchskombinationen werden in 6 Wiederholungen angelegt. Jeweils 3 WH werden bereits ab dem Anlagejahr mit jeweils einer Pfropfrebe bepflanzt. Die Bepflanzung der uebrigen 3 WH erfolgt nach 3-jaehriger Versuchszeit. Der Rauminhalt der Container betraegt 0,6 m3.
Im GLA wurden Grafik und Inhalt der Bodenkarte von Nordrhein-Westfalen 1 : 50 000 EDV-technisch verfuegbar gemacht. Das Kartenblatt wurde per Hand von Dritten von der zweifachen Vergroesserung der Druckvorlage vektoriell digitalisiert. Die Legende wurde im GLA unter Anwendung eines bodenkundlichen Datenschluessels in normierte Kuerzel uebersetzt. Diese Uebersetzung ist auf numerische Weiterverarbeitung im Rechner ausgelegt. Sie bietet die einheitliche, vergleichbare und autorisierte Grundlage fuer Auszuege und Auswertungen des Datenbestandes. Die Ergebnisse der Bearbeitungen koennen als Plots ausgegeben bzw. als digitale Datensaetze an Dritte kostenpflichtig weitergegeben werden. Standardmaessige Auswertungen sind Karten bzw. Tabellen der effektiven Durchwurzelungstiefe, der nutzbaren Feldkapazitaet, der Feuchtestufe, der Kationenaustauschkapazitaet, der Wasserdurchlaessigkeit und des Kapillaraufstiegs. Spezielle Auswertungen stehen zu den Themen Sickerwasser, Austauschhaeufigkeit und Grundwasserbelastung durch Schwermetallionen zur Verfuegung. Es ist moeglich, die Auswertungskarten auf den ALK-GIAP zu uebertragen und dort mit kartographischen Routinen zu bearbeiten. Es wurde eine Verfahrensdatei fuer die Bodenkarte geschrieben, die eine druckkartenaehnliche Ausgabe auf dem HP-Design-jet ermoeglicht. Die gesamte digitale Bodenkarte 1 : 50 000 liegt auf einem PC vor. Der Speicherbedarf liegt bei etwa 80 MB fuer die Graphik und etwa 20 MB fuer die Legende. Bisher wurden ueber 500 TDM und 1O Arbeitsjahre von 2 Mitarbeitern in Aufbau und Auswertung investiert. Fuer 60 von 72 Vollblaettern ist die Bearbeitung abgeschlossen. Der gesamte Datenbestand der BK 50 DIG kann in BIS Dritter ueberfuehrt werden. Das Konzept fuer die digitale Bereitstellung und Bearbeitung dieser Bodenkarte ist so ausgelegt, dass es auch auf die grossmassstaebigen Karten der land- und forstwirtschaftlichen Standortkartierung sowie der Stadtbodenkartierung uebertragen werden kann.
Nearly all processes in soils take place at biogeochemical interfaces. Until now, specific interfacial parameters which are able to link the chemical surface structure with physical interactions in the liquid phase (wettability, sorption) are still missing. Our hypothesis is that thermodynamically defined surface parameters like the contact angle and surface free energy components (dispersive and acid-base components) may be appropriate as effective parameters, complementary to soil properties like pH, texture or cation exchange capacity. To relate effective parameters to chemical structure, the contact angle relevant interphase will be analyzed by X-ray photoelectron spectroscopy. Knowledge of effective parameters should allow to detect relevant modifications of the interfaces or to explain interactions between surfaces and pore water (liquid penetration dynamics), solutes (pesticides) or dispersed particles (colloids). We will apply a thermodynamically-based concept to quantify the transition from hydrophilic to hydrophobic wetting systems. The significance of this transition i.e. on pore liquid distribution and geometry (film thickness and fragmentation), will be analyzed with confocal laser scanning microscopy. Modification of natural and model soils by chemical treatment and cation exchange will ensure a wide range of parameter variation.
Origin | Count |
---|---|
Bund | 862 |
Kommune | 6 |
Land | 444 |
Unklar | 1 |
Wissenschaft | 29 |
Type | Count |
---|---|
Ereignis | 3 |
Förderprogramm | 658 |
Kartendienst | 2 |
Messwerte | 17 |
Strukturierter Datensatz | 20 |
Text | 120 |
Umweltprüfung | 3 |
unbekannt | 353 |
License | Count |
---|---|
geschlossen | 124 |
offen | 1010 |
unbekannt | 26 |
Language | Count |
---|---|
Deutsch | 1072 |
Englisch | 126 |
Resource type | Count |
---|---|
Archiv | 103 |
Bild | 6 |
Datei | 21 |
Dokument | 112 |
Keine | 666 |
Unbekannt | 3 |
Webdienst | 149 |
Webseite | 432 |
Topic | Count |
---|---|
Boden | 1160 |
Lebewesen & Lebensräume | 982 |
Luft | 693 |
Mensch & Umwelt | 1149 |
Wasser | 801 |
Weitere | 1113 |