Der Niedersächsische Bodenfeuchteinformationsdienst (NIBOFID) des LBEG zeigt den tagesaktuellen Wassergehalt für alle Böden in Niedersachsen. Darüber hinaus lässt sich der Verlauf des Bodenwassergehalts für die letzten 10 Tage abrufen. Die Bodenfeuchte wird in % der nutzbaren Feldkapazität (%nFK) angegeben. Die nFK beschreibt die Wassermenge, die ein Boden maximal pflanzenverfügbar speichern kann. Die Werte des Bodenfeuchtemonitors sind berechnet und nicht gemessen. Die Berechnung erfolgt mit dem Bodenwasserhaushaltsmodell BOWAB und wird täglich mit Klimakennwerten (Niederschlag, Temperatur, Wind, Globalstrahlung und relative Luftfeuchte) des Vortages durchgeführt. Es werden für die jeweilige Landnutzung (Acker, Grünland, Laubwald, Nadelwald, Sonstiges) und den Boden spezifisch Parametern abgeleitet. BOWAB nutzt die hochaufgelösten Bodendaten der Bodenkarte 1:50.000 (BK50) von Niedersachsen und leitetet bodenwasserhaushaltliche Kennwerte, wie nFK, FK etc. ab. Die Berechnung erfolgt für die Flächen der BK50. Der Einfluss des Grundwassers wird in Form von kapillarem Aufstieg und durch den Grundwasserstand aus der BK50 berücksichtigt. Eine Bodenfeuchte von 100 %nFK zeigt an, dass der Bodenwasserspeicher gefüllt ist. Bei Werten oberhalb von 100 % entsteht Sickerwasser oder es steht Grundwasser innerhalb der betrachteten Bodenschicht. Werte kleiner als 100 %nFK zeigen an, dass die Pflanzen Bodenwasser entnommen haben und der Boden allmählich austrocknet. Ab Bodenfeuchtewerten unterhalb von 40 - 50 %nFK reagieren Pflanzen auf die Trockenheit und verringern ihre Verdunstung. Bei Werten von < 30 % nFK kann von Trockenstress ausgegangen werden. Im Kartenbild ist die Bodenfeuchte für den Boden von 0 – 60 cm Tiefe dargestellt, der dem Hauptwurzelraum bei den meisten Böden und Nutzungsformen entspricht. Standortbezogene Informationen liefert ein Maptip. Durch das Klicken auf einen Standort wird der aktuelle Bodenwassergehalt für den Hauptwurzelraum in %nFK angezeigt. Zusätzlich können auf der Detailseite weiterführende Informationen abgerufen werden. Als Grafik wird der Verlauf der mittleren Bodenfeuchte für die vergangenen 10 Tage für die Tiefenbereiche 0 - 30 cm (Oberboden), 0 - 60 cm (Hauptwurzelraum) und, sofern der Boden mächtiger ist, 0 - 90 cm (gesamte Betrachtungstiefe) dargestellt. Zudem wird die Sickerwassermenge unterhalb von 90 cm Tiefe für den betrachteten Standort angegeben. Falls Sie noch genauere Informationen zum Wassergehalt für Ihren Boden mit einer bestimmten Anbaukultur (Weizen, Mais, Grünland) benötigen, nutzen Sie gerne die Fachanwendung „Bodenwasserhaushalt“ im NIBIS® Kartenserver. Sie bietet die Möglichkeit den Verlauf der Bodenfeuchte für einzelne oder mehrere Flächen über einen längeren Zeitraum mit verschiedenen Fruchtfolgen (z.B. 1 Jahr oder länger) zu ermitteln.
Der Untersuchungsraum liegt in einem Gebiet, das nachweisbar von der vorhandenen Industrie beeinflusst wurde und wird. Insbesondere in der Vergangenheit gelangten u.a. Schwermetalle über den Luftpfad auf die Oberböden. Da sich diese Stoffe nicht abbauen, sind auch heute noch erhöhte Gehalte – vor allem an Arsen und Kupfer - zu finden. Ab 2001 wurde auf Grundlage des Bundes-Bodenschutzgesetzes (BBodSchG) damit begonnen, alle vorhandenen Bodendaten im Hamburger Südosten zu erfassen und zusammen zuführen. Es wurden ausschließlich Daten von Probenahmestellen ausgewertet, die gewährleisten, dass Belastungen des Oberbodens nicht auf „Altlasten, schädliche Bodenveränderungen, altlastverdächtige Flächen oder Verdachtsflächen“ zurückzuführen sind. Die veröffentlichten Daten beinhalten die Arsen- und Schwermetallgehalte, die im Raster von 500 x 500 m enthalten sind. Es können mehrere Datensätze oder gar keine in diesem Raster vorliegen. Leere Kacheln bedeuten, dass keine Daten vorliegen.
Die Karte der nutzbaren Feldkapazität im effektiven Wurzelraum in Deutschland gibt einen Überblick über das Vermögen der Böden pflanzenverfügbares Wasser zu speichern. Die Größe des Wasserspeichers des Bodens hängt von der Bodenart, der Lagerungsdichte und dem Humusgehalt ab. Der effektive Wurzelraum wird anhand von Landnutzungs- und Bodendaten bestimmt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die klassifizierte nutzbare Feldkapazität. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA4) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Als Landnutzungsinformation und zur nutzungsabhängigen Differenzierung der Profildaten werden Daten des CORINE Land Cover Projektes (2006) genutzt.
The map ”Organic Matter Content of Top-Soils in Germany 1:1,000,000 (INSPIRE)” highlights the results of a Germany-wide compilation of typical soil organic matter contents in top-soils differentiated according to groups of soil parent material, four climatic areas and the main land use. The evaluation is based on more than 9000 soil data profiles with information about Soil Organic Matter (SOM) from a period of about 20 years. The report 'The Organic Matter Content of Top-Soils in Germany', BGR Archive, No. 0127036 (in German) documents the methodology. To transform the organic matter content (of the original dataset HUMUS1000OB) into INSPIRE-relevant organic carbon content (CORG1000OB), we applied the van Bemmelen factor (1.724). According to the “Data Specification on Soil“ (D2.8.III.3_v3.0) and the “Guidelines for the use of Observations & Measurements and Sensor Web Enablement-related standards in INSPIRE“ (D2.9_v3.0) the content of the map “Organic Matter Content of Top-Soils in Germany 1:1,000,000“ is stored in a single INSPIRE-compliant GML file: buek1000-humus-ob_SoilDerivedObject.gml. The data has been transformed into the following INSPIRE-Feature Types (Spatial Object Types): “SoilDerivedObject“, “OM_Observation“ and “OM_Process“. The GML file together with a Readme.txt file is provided in ZIP format (BUEK1000-HUMUS-OB-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML file content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.
Die vorliegenden grundwasserabhängigen Landökosysteme sind für den 3. Bewirtschaftungsplan der EU Wasserrahmenrichtlinie gültig. Nach Anhang V WRRL ist eine Voraussetzung zur Erreichung eines guten chemischen und guten mengenmäßigen Zustandes eines Grundwasserkörpers die Vermeidung einer signifikanten Schädigung der Landökosysteme, die unmittelbar von diesem Grundwasserkörper abhängen. Die Bestandsaufnahme der grundwasserabhängigen Landökosysteme Brandenburgs erfolgte nach LAWA Arbeitshilfe (LAWA 2013) und –Handlungsempfehlung (LAWA 2012) sowie in Anlehnung an die beiden vorhergehenden Bewirtschaftungspläne. Die teilweise oder vollständige Grundwasserabhängigkeit wurde anhand der Grundwasserstände überprüft. Die Datengrundlage bilden Ökosystem- und Schutzgebietsdaten sowie Grundwasserflurabstände und Bodendaten. Die vorliegenden grundwasserabhängigen Landökosysteme sind für den 3. Bewirtschaftungsplan der EU Wasserrahmenrichtlinie gültig. Nach Anhang V WRRL ist eine Voraussetzung zur Erreichung eines guten chemischen und guten mengenmäßigen Zustandes eines Grundwasserkörpers die Vermeidung einer signifikanten Schädigung der Landökosysteme, die unmittelbar von diesem Grundwasserkörper abhängen. Die Bestandsaufnahme der grundwasserabhängigen Landökosysteme Brandenburgs erfolgte nach LAWA Arbeitshilfe (LAWA 2013) und –Handlungsempfehlung (LAWA 2012) sowie in Anlehnung an die beiden vorhergehenden Bewirtschaftungspläne. Die teilweise oder vollständige Grundwasserabhängigkeit wurde anhand der Grundwasserstände überprüft. Die Datengrundlage bilden Ökosystem- und Schutzgebietsdaten sowie Grundwasserflurabstände und Bodendaten. Die vorliegenden grundwasserabhängigen Landökosysteme sind für den 3. Bewirtschaftungsplan der EU Wasserrahmenrichtlinie gültig. Nach Anhang V WRRL ist eine Voraussetzung zur Erreichung eines guten chemischen und guten mengenmäßigen Zustandes eines Grundwasserkörpers die Vermeidung einer signifikanten Schädigung der Landökosysteme, die unmittelbar von diesem Grundwasserkörper abhängen. Die Bestandsaufnahme der grundwasserabhängigen Landökosysteme Brandenburgs erfolgte nach LAWA Arbeitshilfe (LAWA 2013) und –Handlungsempfehlung (LAWA 2012) sowie in Anlehnung an die beiden vorhergehenden Bewirtschaftungspläne. Die teilweise oder vollständige Grundwasserabhängigkeit wurde anhand der Grundwasserstände überprüft. Die Datengrundlage bilden Ökosystem- und Schutzgebietsdaten sowie Grundwasserflurabstände und Bodendaten.
Beschreibung des INSPIRE Download Service (predefined Atom): Dieser INSPIRE Datensatz beinhaltet die saarländischen Bodendaten aus ALKIS. Die Transformation erfolgte gemäß den INSPIRE Richtlinien Soil in der Version 4.0. Folgende Anwendungsschemen werden derzeit zu diesem Thema bereitgestellt: * AX_Bodenschätzung - Der/die Link(s) für das Herunterladen der Datensätze wird/werden dynamisch aus GetFeature Anfragen an einen WFS 1.1.0+ generiert
Das Fachinformationssystem (FIS) Bodenschutz beinhaltet die Teilprojekte der 'Digitalen Bodenkarte Hamburg': - Fachplan Schutzwürdige Böden - Bodenversiegelung Hamburg - Bodendaten Profilinformationen - Bodenformengesellschaften Hamburg - Verdunstungspotential von Böden
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Veranlassung Beobachtungen und Klimaprojektionen zeigen, dass sich die Regenintensität und damit auch die Bodenerosion im Klimawandel erhöht. Dabei ist besonders eine Zunahme von Starkregenereignissen von Bedeutung, da diese Ereignisse nicht nur extreme Abflüsse, sondern auch den Transport großer Mengen an Feststoffen bewirken. Für das Flussgebietsmanagement und für die Einschätzung der zukünftigen Wasserqualität ist es wichtig, die erwartete Zunahme der Bodenerosion und des Feststoffeintrags in Gewässer zu quantifizieren und räumlich zu verorten. Dazu wurde exemplarisch für das Einzugsgebiet der Elbe ein Bodenerosionsmodell aufgesetzt. Dieses berechnet zunächst die mittlere jährliche Erosion aus Landnutzungsdaten, Bodendaten, einem digitalen Höhenmodell und Daten der Regenerosivität. In einem zweiten Schritt wird die Transportkapazität bestimmt. Diese bestimmt, ob und wie viel des erodierten Bodenmaterials hangabwärts transportiert wird und welcher Anteil im Gelände zurückgehalten wird (Deposition). Ziele - Quantifizierung der Bodenerosion in der Vergangenheit (Referenzzeitraum 1971 - 2000), räumlich aufgelöst im Flusseinzugsgebiet der Elbe - Quantifizierung der Sedimenteinträge in das Gewässernetz und Vergleich der simulierten Einträge mit Messwerten - Ermittlung der zukünftigen Regenerosivität aus Klimaprojektionen des Referenzensembles des DWD - Berechnung der zukünftigen Erosion und zukünftiger Sedimenteinträge für die nahe Zukunft (2031 - 2060) und die ferne Zukunft (2071 - 2100) sowie unterschiedliche Klimaszenarien - Abschätzung der Unsicherheiten des Modellierungsansatzes Bodenerosion und Sedimenttransport sind natürliche Prozesse, die bewirken, dass feine Bodenpartikel abgelöst, durch Wind oder Wasser transportiert und im Gelände zurückgehalten oder in Gewässer eingetragen werden. Sie unterliegen jedoch einem starken menschlichen Einfluss und lösen vielerorts ökologische, ökonomische und gesellschaftliche Probleme aus. Dazu zählen der Verlust von fruchtbarem Boden, die Sedimentierung von Stauseen, der Transport von partikelgebundenen Nähr- und Schadstoffen sowie die Verlandung von Stillwasserbereichen. Bodenerosion und Sedimenteinträge haben einen wichtigen Einfluss auf den Feststoffhaushalt und die Wasserqualität von Gewässern. Der Klimawandel bewirkt eine Intensivierung dieser Prozesse.
- wissenschaftliche Information, Beratung und Bearbeitung bodenkundlicher Fragestellungen - Interpretation und Dokumentation bodenkundlicher Befunde - Aufbau und Betreuung des FIS Boden und der Bodenprobenbank - Planung und Durchführung von Aufgaben des vorsorgenden Bodenschutzes - Mitwirkung beim technischen Bodenschutz - Erstellung bodenkundlicher Karten - nachsorgender Bodenschutz - Führung Bodenschutz- und Altlastenkataster (dBAK)
Origin | Count |
---|---|
Bund | 184 |
Europa | 1 |
Land | 79 |
Wirtschaft | 1 |
Wissenschaft | 8 |
Type | Count |
---|---|
Förderprogramm | 148 |
Messwerte | 2 |
Strukturierter Datensatz | 2 |
Text | 34 |
unbekannt | 60 |
License | Count |
---|---|
geschlossen | 53 |
offen | 185 |
unbekannt | 6 |
Language | Count |
---|---|
Deutsch | 206 |
Englisch | 65 |
Resource type | Count |
---|---|
Archiv | 10 |
Bild | 4 |
Datei | 4 |
Dokument | 18 |
Keine | 123 |
Unbekannt | 1 |
Webdienst | 22 |
Webseite | 104 |
Topic | Count |
---|---|
Boden | 227 |
Lebewesen & Lebensräume | 185 |
Luft | 147 |
Mensch & Umwelt | 244 |
Wasser | 148 |
Weitere | 239 |