Das Projekt "Forest management in the Earth system" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Max-Planck-Institut für Meteorologie.The majority of the worlds forests has undergone some form of management, such as clear-cut or thinning. This management has direct relevance for global climate: Studies estimate that forest management emissions add a third to those from deforestation, while enhanced productivity in managed forests increases the capacity of the terrestrial biosphere to act as a sink for carbon dioxide emissions. However, uncertainties in the assessment of these fluxes are large. Moreover, forests influence climate also by altering the energy and water balance of the land surface. In many regions of historical deforestation, such biogeophysical effects have substantially counteracted warming due to carbon dioxide emissions. However, the effect of management on biogeophysical effects is largely unknown beyond local case studies. While the effects of climate on forest productivity is well established in forestry models, the effects of forest management on climate is less understood. Closing this feedback cycle is crucial to understand the driving forces behind past climate changes to be able to predict future climate responses and thus the required effort to adapt to it or avert it. To investigate the role of forest management in the climate system I propose to integrate a forest management module into a comprehensive Earth system model. The resulting model will be able to simultaneously address both directions of the interactions between climate and the managed land surface. My proposed work includes model development and implementation for key forest management processes, determining the growth and stock of living biomass, soil carbon cycle, and biophysical land surface properties. With this unique tool I will be able to improve estimates of terrestrial carbon source and sink terms and to assess the susceptibility of past and future climate to combined carbon cycle and biophysical effects of forest management. Furthermore, representing feedbacks between forest management and climate in a global climate model could advance efforts to combat climate change. Changes in forest management are inevitable to adapt to future climate change. In this process, is it possible to identify win-win strategies for which local management changes do not only help adaptation, but at the same time mitigate global warming by presenting favorable effects on climate? The proposed work opens a range of long-term research paths, with the aim of strengthening the climate perspective in the economic considerations of forest management and helping to improve local decisionmaking with respect to adaptation and mitigation.
Das Projekt "Dynamic (redox) interfaces in soil - Carbon turnover in microbial biomass and flux into soil organic matter" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltbiotechnologie.Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
Das Projekt "Auswirkungen der historischen Köhlerei auf Bodenlandschaften in West Connecticut, USA" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Cottbus-Senftenberg, Fachgebiet Geopedologie und Landschaftsentwicklung.Holzkohlemeilerrelikte (HKMs) sind anthropogene Kleinformen, die in historischen Montanregionen der Mittelgebirge in Europa weit verbreitet sind. Neue Funde von mehreren tausend HKMs im Norddeutschen Tiefland und die Auswertung hochauflösender digitaler Geländemodelle (DGMs) haben gezeigt, dass die historische Holzkohleproduktion eine bedeutende Rolle bei der spätholozänen Landschaftsentwicklung spielen kann. Neben den historischen und archäologischen Aspekten von HKMs sind die möglichen ökosystemaren Auswirkungen der Köhlerei von Bedeutung, u.a. Veränderungen der physikalischen und chemischen Bodeneigenschaften, erhöhte Gehalte an Bodenkohlenstoff und Effekte auf das Pflanzenwachstum. Es besteht ein beachtliches Forschungsdefizit hinsichtlich der allgemeinen ökologischen Relevanz von HKMs, da die gesamte Dimension der großen HKM-Landschaften bisher nur in Ansätzen verstanden ist. Köhlerei war auch im Nordosten der USA von Bedeutung, obwohl dort deren Auswirkungen auf die Landschaft weitgehend unbekannt sind. Jüngst konnten mittels Analyse von schattenplastischen Reliefkarten über 3.000 HKMs in einem 40 km2 großen Gebiet in Pennsylvania und über 20.000 HKMs in einem 1.170 km2 großen Areal in Litchfield County (NW Connecticut) nachgewiesen werden. Aufgrund dieser Befunde ergibt sich ein komplett neues Bild hinsichtlich der anthropogenen Komponente bei der Entwicklung der Bodenlandschaft im Nordosten der USA. Relativ dicht gedrängt finden sich HKMs in den Litchfield Hills in der Umgebung von West Cornwall, Litchfield County, Connecticut. Die HKMs sind an den Hängen des Housatonic River besonders gut erhalten und bilden kreisförmige Plattformen mit Durchmessern von i.d.R. weniger als zehn Metern. Es ist bemerkenswert, dass heute unter dichter Bewaldung diese Hinterlassenschaften der frühen Holzkohleindustrie weitgehend in Vergessenheit geraten sind, obwohl viele Meiler noch Ende des 19. Jahrhunderts in Betrieb waren. Weitere Forschungen sind erforderlich, um unser Verständnis zu den Umweltauswirkungen der historischen Köhlerei zu verbessern und die Quantität sowie Qualität dieses Nutzungserbes auf unsere modernen Ökosysteme zu erfassen. Die Litchfield Hills bieten beste Voraussetzungen, um Eigenschaften, Entwicklung und Verbreitung der HKM-beeinflußten Böden zu untersuchen und generell neue Erkenntnisse zu anthropogenen Bodenlandschaften zu erhalten.
Das Projekt "Nutzung von nah- und fernerkundlichen Daten verschiedener Sensoren für die Entwicklung von alternativen Modellierungsansätzen zur Bewertung von organischem Bodenkohlenstoff (SOC) und seiner Dynamik auf landwirtschaftlich genutztem Grünland auf Moorböden" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit , Bundesamt für Naturschutz (BMU,BfN). Es wird/wurde ausgeführt durch: Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V..
Das Projekt "Emmy Noether-Nachwuchsgruppen, Tropische Bodenkohlenstoffdynamik im Bezug zur Variabilität von Bodengeochemie und Landnutzung entlang erosiver Störungsgradienten (TropSOC)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Augsburg, Institut für Geographie.Die Reaktion von Böden auf erosionsbedingte Störungen ist eine der großen Unsicherheiten bei der Vorhersage von zukünftigen Treibhausgasflüssen von Böden zur Atmosphäre in Erdsystemmodellen. Das tropische Afrika ist dabei ein wichtiger globaler Hotspot von Klima- und Landnutzungswandel. Schnell wachsende Bevölkerung, Abholzung der Primärwälder zur Schaffung von Ackerflächen sowie die damit einhergehende Bodendegradation stellen die Region vor große Herausforderungen. Es wird erwartet, dass dort noch in diesem Jahrhundert bedeutende Änderungen sowohl in Bezug auf biogeochemische Kreisläufe in Böden, als auch den Fluss von Kohlenstoff (C) zwischen Boden, Vegetation und der Atmosphäre auftreten werden. Da sich der Großteil unseres Prozessverständnisses des Kohlenstoffzyklus aus den Klimazonen der mittleren Breiten ableitet, ist unklar wie sich die Kohlenstoffdynamik in den Tropen entwickeln wird. Es ist wichtig, diese Wissenslücke zu füllen, da tropische Ökosysteme Dienstleistungen von globaler Bedeutung übernehmen, wie zum Beispiel der Kohlenstoffspeicherung in Pflanzen und Böden, Biomasseproduktion und letztlich Lebensmittelversorgung der Region. Ziel des vorgeschlagenen Projektes TROPSOC ist es daher ein mechanistisches Verständnis der Kohlenstoffsequestrierung und -mineralisierung in Böden des tropischen Afrikas zu entwickeln. Die Studienflächen im östlichen Bereich des Kongo-Einzugsgebietes bieten eine einzigartige Kombination aus geologisch unterschiedlichem Ausgangsmaterial für die Bodenbildung und verschiedenen Ebenen der Störung durch den Menschen, welche unter tropisch-feuchtem Klima stattfindet. TROPSOC wird wesentlich dazu beitragen, die folgenden Fragen zu beantworten: 1. Wie werden sich Kohlenstoffflüsse und -speicherung in tropischen Systemen zwischen Böden, Pflanzen und der Atmosphäre entwickeln und unterscheiden mit Bezug auf die Steuerungsfaktoren: Geologie, Boden, Störungen durch den Menschen und Topographie? 2. Wie beeinflusst die Biogeochemie von tropischen Böden die Schwere der erosiven Störung des tropischen Kohlenstoffzyklus? 3. Wie kann man die Kontrollmechanismen der Bodenkohlenstoffdynamik in einer räumlich expliziten Weise modellieren? TROPSOC wird maßgeblich zum besseren Verständnis der Faktoren beitragen, welche die räumliche Verteilung und zeitliche Dynamik von organischen Kohlenstoff in tropischen Böden steuern. TROPSOC wird Daten und Modelle erzeugen welche die Lücke zwischen lokalem Prozessverständnis und großräumlicher Modellierung des Kohlenstoffzyklus in tropischen Böden schließt. Dies wird letztlich dazu beitragen, die Unsicherheit im Zusammenhang mit terrestrischen Kohlenstoffflüssen und der Reaktion von Böden auf Störungen zu reduzieren, was eines der größten Probleme in aktuellen Erdsystemmodellen und bei der Beurteilung von Ökosystemdienstleistungen darstellt.
Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Interaktive Einflüsse von Pflanzeneigenschaften und Klima auf den organischen Bodenkohlenstoff entlang der chilenischen Küstenkordillere" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Marburg, Fachgebiet Biogeographie und Biodiversitätsforschung, Arbeitsgruppe Hochgebirgsforschung.Der Eintrag organischen Kohlenstoffs in den Boden ist eine der Hauptsteuergrößen für Prozesse der Verwitterung und Erosion und wird im Wesentlichen durch das Zusammenspiel von Klima und Vegetation gesteuert. Ein wichtiges Ziel des DFG-Schwerpunktprogrammes EarthShape (SPP 1803) ist es, zu verstehen, wie gerade diese Interaktionen den Bodenkohlenstoff, der zum einen eine mikrobielle Energiequelle darstellt und zum anderen als stabilisierender Faktor der Erosion entgegenwirkt, beeinflussen. Das beantragte Projekt hat daher zum Ziel, die organische Kohlenstoffdynamik ausgehend von der Pflanze über die Streu in den Boden zu untersuchen und die Einflüsse des Klimas und der Vegetation zu entkoppeln. Die Bedeutung von Klima- und Pflanzeneigenschaften ist skalenabhängig, daher wird ein skalenübergreifender Forschungsansatz verfolgt, der unterschiedliche räumliche und klimatische Skalen abdeckt. Diese umfassen drei Biome entlang der chilenischen Küstenkordillere (arid, mediterran, nass-gemäßigt) und jeweils 2 unterschiedliche Untersuchungsflächen innerhalb dieser Biome. Die Erfassung verschiedener Pflanzengesellschaften und des entsprechenden Bodenkohlenstoffs auf diesen unterschiedlichen Skalen ermöglicht eine Entkopplung klimatischer und vegetationsgebundener Effekte. Die reziproke Translokation von Bodenmonolithen und Streuauflagen sowohl zwischen den Biomen als auch zwischen den Untersuchungsflächen ermöglicht eine detaillierte Entschlüsselung klimatischer und pflanzlicher Effekte. Letztere wird dabei funktional betrachtet und der Einfluss chemischer, physikalischer und phänologischer Pflanzeneigenschaften dargestellt. Zudem wird an den Untersuchungsflächen Unterbodenmaterial an die Erdoberfläche verlagert, um zu überprüfen, ob der darin gespeicherte organische Kohlenstoff auch bei veränderten Bedingungen (z.B. Temperatur) weiterhin aufgrund seiner molekularen Struktur stabil bleibt oder diese Stabilität lediglich durch Effekte im Unterboden determiniert wurde. Die Anwendung innovativer Labormethoden (HPLC, ICM-PS, EA-IRMS, AQUALOG) erlauben eine detaillierte Beschreibung des Kohlenstoffs und beeinflussender Faktoren (C, N, P, 13C, Lignin, Tannin, Spurenelemente) in Blättern, Streu und im Bodenprofil. Die simultane Messung von Absorption und Fluoreszenz inklusive der Anwendung von EEM und PARAFAC erlaubt eine detaillierte Untersuchung des gelösten organischen Bodenkohlenstoffs. Kooperative Datenanalysen sind ein wesentlicher Aspekt des Projektes, um die vielfältigen Ergebnisse, entsprechend des skalenübergreifenden Forschungsansatzes, in Beziehung zu setzen. Unsere Ergebnisse werden ein statistisches Modell beinhalten, das eine Vorhersage des organischen Bodenkohlenstoffgehalts auf Basis von Klima- und Vegetationsmerkmalen in der Wirkungskette Pflanze-Streu-Boden ermöglicht. Dieses Prozesswissen trägt zum Verständnis und der Modellierung des Kohlenstoffkreislaufs als Grundlage reliefbezogener Bodenprozesse bei.
Das Projekt "Forschergruppe (FOR) 918: Carbon flow on belowground food webs assessed by isotope tracers, Nematodes as link between microbial and faunal food web" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Berlin (Humboldt-Univ.), Institut für Biologie, Arbeitsgruppe Ökologie.The proposed project examines the nematode fauna at the two field experiments 'Long-term recalcitrant C input' and 'Carbon flow via the herbivore and detrital food chain'. A gradient from resource rich to deeper oligotrophe habitats, i.e. from high to low diverse food webs, is investigated. The impact of resource availability and quality (recalcitrant versus labile) and presence or absence of living plants (rhizosphere versus detritusphere) on the nematode population are assessed. Insight into micro-food web structure is gained by application of the nematode faunal analysis concept, based on the enrichment, structure and channel index. In laboratory model systems carbon flux rates for food web links are determined between bacteria/fungi and their nematode grazers for dominant taxa in the arable field. Further, carbon leakage from plant roots induced by herbivore nematode is studied as link between root and bacterial energy channels. By using 13C/12C stable isotope probing (FA-SIP) fatty acids serve as major carbon currency. Coupling qualitative and quantitative data on nematode field populations, with carbon flow via biomarker fatty acids in microorganisms and grazers will allow to connect microbial and faunal food web, and to directly link nematode functional groups with specific processes in the soil carbon cycle.
Das Projekt "C- und N-Rhizodeposition in Erbsenreinsaat und im Gemengeanbau: Räumliche Verteilung, zeitliche Dynamik, mikrobieller Umsatz und Transferprozesse" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Kassel, Lehr- und Forschungsgebiet Boden- und Pflanzenbauwissenschaften, Fachgebiet Ökologischer Land- und Pflanzenbau.Ziel des Forschungsvorhabens ist die Quantifizierung der räumlichen und zeitlichen Verteilung der Rhizodeposition (C und N) von Erbsen und deren Transfer in die mikrobielle Biomasse, in die Folgekulturen und in den Gemengepartner im Feld. Ein Großteil der Ergebnisse zur quantitativen Erhebung der Rhizodeposition basiert auf Gefäßversuchen. Einzelne Untersuchungen weisen auf höhere Werte im Feld hin. Ein wesentlicher Teil dieses Projektes besteht daher aus Feldversuchen zur Quantifizierung (a) der räumlichen und zeitlichen Verteilung der C- und N-Rhizodeposition von Erbsen in Monokultur und im Gemengeanbau, (b) des Einbaus der Rhizodeposite in die mikrobielle Biomasse, (c) des C- und N-Transfers aus der Rhizodeposition in Gemengepartner. Zur Abschätzung der Bedeutung der Mykorrhiza für die Rhizodeposition, sollen zudem Gefäßversuche zur (a) Quantifizierung der C- und N-Rhizodeposition im zeitlichen Verlauf, (b) des Einbaus der Rhizodeposite in verschiedene Bodenkompartimente und (c) des C- und N-Transfers aus der Rhizodeposition in Folgekulturen und Gemengepartner von mykorrhizierten und nicht mykorrhizierten Erbsen durchgeführt werden.
Das Projekt "Humusvergrabung zur Speicherung von Kohlenstoff in Böden - Potentiale, Prozesse und Langzeiteffekte" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Agrarrelevante Klimaforschung.Die zusätzliche Speicherung von Bodenkohlenstoff ist als Klimaschutzmaßnahme zur Reduzierungatmosphärischen CO2 anerkannt. Der Fokus von Forschung und Praxis lag bisher auf der reduzierten oderkonservierenden Bodenbearbeitung, obwohl deren Effekte auf die Kohlenstoffvorräte für Böden meist marginal sind. Bislang wurde die Option der Humusvergrabung - das Einbringen von Kohlenstoff in tiefereBodenhorizonte - als Maßnahme zu Erhöhung der Kohlenstoffvorräte nicht berücksichtigt und ist kaumuntersucht. Zusätzlich sind die Prozesse und Mechanismen der langfristigen Stabilisierung und Speicherungvon Kohlenstoff in Unterböden unzureichend verstanden. Bodennutzung hat zu allen Zeiten auch zur Humusvergrabung geführt. Seit dem 12. Jahrhundert war Ackerbau in Form von Wölbäckern weit verbreitet. Durch das wendende Pflügen zur Mitte eines Ackerschlags entstanden Kämme unter denen fossile Ap-Horizonte vergraben wurden. Seit Erfindung des Dampfpflugs war es möglich, immer tiefer zu pflügen. Das Tiefpflügen wurde zur Melioration von Podsolen, Parabraunerden und später auch Mooren eingesetzt. In den 1960er Jahren wurden in Norddeutschland dutzende landwirtschaftliche Versuche zum Tiefpflügen angelegt.
Das Projekt "Effekt des Klimawandels auf die Bodenatmung" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Bundesforschungs- und Ausbildungszentrum für Wald, Naturgefahren und Landschaft, Stabsstelle der Direktion.Die Vorhersage der Kohlenstoff(C)bilanz von Wäldern bei geänderten Klimabedingungen ist eine komplexe Aufgabe. Es bedarf des Verständnisses des Abbaus der organischen Substanz (SOM) im Boden wie etwa der Temperatur- und Feuchtigkeitsempfindlichkeit und der Substratqualität für Bodenmikroorganismen. Für eine Abschätzung der künftigen C-Speicherung in Waldökosystemen ist die Kenntnis der langfristigen Entwicklung des organischen Boden-Kohlenstoffvorrats entscheidend. Erhöhte Bodentemperaturen ermöglichen den Bodenmikroorganismen die organische Substanz schneller abzubauen. Das führt zu einer erhöhten Freisetzung von Bodenkohlenstoff in Form von CO2 (Bodenatmung). Sobald der leicht abbaubare Bodenkohlenstoff verbraucht ist, kann sich der temperaturbedingte Anstieg der Bodenatmung längerfristig wieder abschwächen. Die Rolle der Bodenmikroorganismen in diesem Zusammenhang ist noch nicht geklärt. So würde eine Verschiebung von einer bakterien-dominierten Gemeinschaft zu einer pilz-dominierten Gemeinschaft den Umsatz schwer abbaubaren organischen Materials fördern und den Effekt einer Erwärmung auf die CO2-Emission verstärken. Andererseits kann die physiologische Anpassung von Mikroorganismen an geänderte Umweltbedingungen den Temperatureffekt abschwächen. Eine weitere Unsicherheit ist die mikrobielle Aktivität im Winter und die damit verbundene CO2-Ausgasung aus dem Boden. Gerade in wenig produktiven Bergwäldern stellt die winterliche CO2-Emission einen beträchtlichen Teil des C-Flusses des ganzen Jahres dar. Neben der Bodentemperatur wirken sich auch Veränderungen der Niederschlagsmenge bzw. der zeitlichen Verteilung des Niederschlags unmittelbar auf den Bodenkohlenstoff-Umsatz aus. Klimasimulationen sagen für das Untersuchungsgebiet trockenere Sommer, mehr Niederschlag im Winter und eine Verlängerung der Schneedeckendauer vorher. Diese Effekte könnten den stimulierenden Effekt des Temperaturanstieges auf die Bodenatmung abschwächen. In unserer Studie soll ein bereits bestehendes Bodenerwärmungsexperiment adaptiert werden um die CO2-Emissionen aus dem Boden unter verschiedenen Niederschlagsszenarien auf Kontrollflächen und Erwärmungsflächen zu messen. Während der Vegetationsperiode beträgt die Temperaturerhöhung auf den Erwärmungsflächen konstante 3 C. Mit einer Dachkonstruktion soll im Sommer temporär eine Dürreperiode erzeugt werden. Erhöhter Niederschlag im Spätwinter wird durch Schneezugabe auf die Versuchsflächen simuliert. Die bestehende Versuchsanordnung ermöglicht die Unterscheidung zwischen autotropher und heterotropher Bodenatmung. Die Organismen, die für die heterotrophe Atmung zuständig sind, werden mit molekularen Methoden der Mikrobiologie untersucht. Die Ergebnisse des Experiments werden zeigen, ob die Böden von Bergwäldern in einer wärmeren Umwelt eine potentielle Quelle oder doch eine Senke von C sind. usw.
Origin | Count |
---|---|
Bund | 153 |
Land | 4 |
Wissenschaft | 3 |
Type | Count |
---|---|
Förderprogramm | 150 |
Text | 5 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 4 |
offen | 155 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 119 |
Englisch | 62 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 91 |
Webdienst | 1 |
Webseite | 67 |
Topic | Count |
---|---|
Boden | 155 |
Lebewesen & Lebensräume | 154 |
Luft | 124 |
Mensch & Umwelt | 160 |
Wasser | 125 |
Weitere | 159 |