In Folge des globalen Klimawandels hat sich die Meereisdecke in der Arktis dramatisch verändert. Im derzeitigen Zustand spielt die arktische Eisdecke eine wichtige Rolle; so schirmt sie das Oberflächenwasser, die sogenannte arktische Halokline (Salzgehaltsschichtung), von der Erwärmung durch die sommerliche Sonneneinstrahlung ab. Zudem wird die Halokline durch die Salze, welches beim Gefrierprozess des Meerwassers aus der Kristallstruktur austritt, gebildet und stabilisiert. Gleichzeitig wirkt die Halokline als Barriere zwischen der Eisdecke und dem darunter liegenden warmen atlantischen Wasser und trägt so zum Erhalt der arktischen Meereisdecke bei. Dieses Gleichgewicht ist nun durch die insgesamt wesentlich dünnere arktische Meereisdecke und ihre verringerte sommerliche Ausdehnung gestört. Im Meerwasser sind zudem Gase und biogeochemisch wichtige Spurenstoffen enthalten. Diese werden durch die Gefrierprozesse eingeschlossen, beeinflusst und wieder ausgestoßen. So beeinflusst die Meereisdecke die Gas- und Stoffflüsse zwischen Atmosphäre, Eis und oberer Wasserschicht. Durch die Eisbewegung findet außerdem ein Transport statt z.B. in der sogenannten Transpolarendrift von den sibirischen Schelfgebieten, über den Nordpol, südwärts bis ins europäische Nordmeer. Nun wird mit den weitreichenden Veränderungen des globalen und arktischen Klimawandels bereits von der „neuen Arktis“ gesprochen, da angenommen wird, dass sich die Arktis bereits in einem neuen Funktionsmodus befindet. Dabei ist jedoch weitgehend unbekannt wie dieses neue System funktioniert, sich weiterentwickelt und wie sich dies auf die Eisbildungsprozesse und damit die Stabilität der Halokline und die damit verbundenen Gas- und Stoffflüsse auswirkt. Für solche Untersuchungen werden über den Jahresverlauf Proben der oberen Wassersäule und der Eisdecke benötigt. Ermöglicht wird dies durch die wissenschaftliche Initiative MOSAiC. Mithilfe der stabilen Isotope des Wassers (?18O und ?D) aus dem Eis und der Wassersäule kann Rückschlüsse auf die Herkunftswässer und den Gefrierprozess gezogen werden und diese Ergebnisse sollen in direkten Zusammenhang mit Gas- und biogeochemischen Stoffuntersuchungen (aus Partnerprojekten) gesetzt werden. Dabei können z.B. Stürme, Schmelzprozesse, Schneebedeckung, Teichbildung und Alterungseffekte des Eises eine Rolle spielen. Untersucht wird parallel die Veränderung der Wassersäule welche z.B. durch Wärmetransport, wiederum die Eisdecke beeinflussen kann.Diese prozessorientierten Untersuchungen der saisonalen Eisbildungsprozesse in Eis und Wassersäule der zentralen Arktis, werden einen wichtigen Beitrag zum Verständnis der Stabilität der arktischen Halokline und der arktischen Gas- und Stoffflüsse liefern. Da sich die Gase und Stoffe nicht-konservativ verhalten, während die Isotope im Gefrierprozess konservativ sind, erwarten wir aus der Diskrepanz wiederum wichtige Informationen z. B. über wiederholtes Einfrieren von Süßwasserbeimengungen ableiten zu können.
Das Forschungsvorhaben soll zur Rekonstruktion der Klima- und insbesondere der Monsunvariabilität in Südwestchina beitragen. Anhand von Bohrkernen klimasensitiver Bäume entlang klimatischer Höhengradienten sollen Jahrringchronologien mehrerer Baumarten für die letzten ca. 500 Jahre erstellt werden. Diese bilden die Basis zur Rekonstruktion verschiedener saisonaler Klimaelemente, die dann zum Witterungsverlauf während des gesamten Jahres rekombiniert werden. Durch die dendrochronologische Datierung verschieden alter Moränen soll die Gletschergeschichte der letzten Jahrhunderte rekonstruiert werden. Diese Daten werden durch Altersdatierungen mit der C14-Methode von fossilen Pflanzen- und Bodenresten ergänzt. Ein Vergleich der Gletschergeschichte des Gongga Shan mit dem zentralen Osttibet soll Unterschiede in der Dynamik des ostasiatischen Zweigs des Monsunsystems und des Indischen Monsunsystems zutage treten lassen. In Zusammenarbeit mit Prof. Richter (Erlangen) werden Studien zum Bestandesalter und zur Vegetationsdynamik von Pflanzenbeständen durchgeführt, die auf den Obermoränen der rezenten Gletscher gedeihen. Studien zum Entwicklungsgrad der Böden und der Bodentemperaturen im Wurzelraum dienen der besseren ökologischen Interpretation der dendrochronologischen Befunde.
Meeressedimente enthalten schätzungsweise größer als 10^29 mikrobielle Zellen, welche bis zu 2.500 Meter unter dem Meeresboden vorkommen. Mikrobielle Zellen katabolisieren unter diesen sehr stabilen und geologisch alten Bedingungen bis zu einer Million mal langsamer als Modellorganismen in nährstoffreichen Kulturen und wachsen in Zeiträumen von Jahrtausenden, anstelle von Stunden bis Tagen. Aufgrund der extrem niedrigen Aktivitätsraten, ist es eine Herausforderung die metabolische Aktivität von Mikroorganismen unterhalb des Meeresbodens zu untersuchen. Die Transkriptionsaktivität von diesen mikroben kann seit Kurzem metatranskriptomisch untersucht werden, z.B. durch den Einsatz von Hochdurchsatzsequenzierung von aktiv transkribierter Boten-RNA (mRNA), die aus Sedimentproben extrahiert wird. Tiefseetone zeigen ein Eindringen von Sauerstoff bis zum Grundgebirge, welches auf eine geringe Sedimentationsrate im ultra-oligotrophen Ozean zurückzuführen ist. Der Sauerstoffverbrauch wird durch langsam respirierende mikrobielle Gemeinschaften geprägt, deren Zellzahlen und Atmungsraten sehr niedrig gehalten werden durch die äußerst geringe Menge organischer Substanz, die aus dem darüber liegendem extrem oligotrophen Ozean abgelagert wird. Die zellulären Mechanismen dieser aeroben mikroben bleiben unbekannt. Im Jahr 2014 hat eine Expedition erfolgreich Sedimentkerne von sauerstoffangereichertem Tiefseeton genommen. Vorläufige metatranskriptomische Analysen dieser Proben zeigen, dass der metatranskriptomische Ansatz erfolgreich auf die aeroben mikrobiellen Gemeinschaften in diesen Tiefseetonen angewendet werden kann. Wir schlagen daher vor diese Methode mit einem hohen Maß an Replikation, in 300 Proben von vier Standorten, anzuwenden. Dieser Einsatz wird es uns ermöglichen, Hypothesen in Bezug auf zelluläre Aktivitäten unterhalb des Meeresbodens, mit einer beispiellosen statistischen Unterstützung, zu testen.Wir warden den aeroben Stoffwechsel, welcher die langfristige Existenz von Organismen in Tiefseetonen unterstützt, bestimmen, Subsistenzstrategien identifizieren in aeroben und anaeroben Gemeinden unterhalb des Meeresbodens, und extrazelluläre Enzyme und ihr Potenzial für den organischen Substanzabbau charakterisieren. Die folgenden Fragen werden damit beantwortet: Wie das Leben im Untergrund über geologische Zeiträume unter aeroben Bedingungen überlebt? Was die allgegenwärtigen und einzigartigen Mechanismen sind, die langfristiges Überleben in Zellen unter aeroben und anaeroben Bedingungen fördert? Was die Auswirkungen von Sedimenttiefe und Verfügbarkeit von organischer Substanz auf die mikrobielle Produktion von extrazellulären Hydrolasen unter aeroben und anaeroben Bedingungen sind? Dies wird sowohl ein besseres Verständnis dafür liefern, wie mikrobielle Aktivitäten unterhalb des Meeresbodens verteilt sind und was ihre Rolle in biogeochemischen Zyklen ist, als auch wie das Leben über geologische Zeiträume unter extremer Energiebegrenzung überlebt.
Submarine Hangrutschungen stellen ein bedeutendes Risiko für Offshore-Infrastrukturen und Küstengebiete dar, da sie zum Beispiel gefährliche Tsunamis auslösen können, wie der Storegga Slide vor der Küste Norwegens. Neben anderen Präkonditionierung für Hangrutschungen, wie steile Hangneigung oder Überdruck in den Porenräumen der Sedimente verursach im Zusammenhang mit Eiszeiten, wurde die Auflösung von Gashydraten in vielen Studien diskutiert. Die weltweite räumliche Überscheidungen von submarinen Hangrutschungen und Gashydratvorkommen hat zu der Hypothese geführt, dass die Auflösung von Gashydraten in Zeiten von Meeresspiegelsenkung oder Erderwärmung eine Hangrutschung auslösen kann. Dieser Prozess entfernt die zementierenden Gasyhdrate aus den Porenräumen und das frei werdende Gas verursacht zusätzlichen Überdruck . Obwohl Studien mithilfe von numerischen Modellierungen gezeigt haben, dass diese Hypothese realistisch ist, konnte die Forschung keine geologischen oder geophysikalischen Beweise dafür finden, dass dieser Prozess wirklich eine Hangrutschung ausgelöst hat. Außerdem zeigen verschiedene Studien, dass viele submarine Hangrutschungen retrogressiv sind und auf dem mittleren bis unteren Kontinentalhang ausgelöst werden. Diese Beobachtung lässt vermuten, dass andere Prozesse die Rutschungen auslösen. Davon abgesehen gibt es keinen Zweifel, dass Gashydrate die geotechnischen Eigenschaften von Sedimenten stark beeinflussen. Daher ist es wichtig ihren Einfluss auf die Hangstabilität weiter zu untersuchen und neue Hypothesen zu testen. Das übergeordnete wissenschaftliche Ziel dieses Antrags ist es, (1) die globale Relevanz von Gashydratgefüllten Rissen für Hangstabilität zu ergründen und (2) den Einfluss von Scherfestigkeitsvariationen auf Störungsverläufe und Stressmerkmale, wie z.B. Bohrlochausbrüche, zu verstehen. Bis jetzt war es nicht möglich gewesen, den Zusammenhang zwischen Gashydraten und Hangstabilität herzustellen, da ein umfangreicher Datensatz aus geotechnischen, geologischen und geophysikalischen Daten aus einem Gebiet mit Gashydrate verursachten Rutschungen nicht verfügbar war. Die IODP Expedition 372 hat dies geändert. Uns stehen jetzt Logging-While-Drilling Daten und Sedimentkerne von dieser Expedition zur Verfügung, genauso wie ein hochauflösender 3D Seismik Datensatz, der mit dem GEOMAR P-Cable System im Jahre 2014 aufgezeichnet wurde. Diese Daten im Zusammenhang mit einer Scherzelle für Gashydrathaltige Sedimente auf dem neusten Stand der Technik am GEOMAR, die es erlaubt die Deformation der Probe live mit einem 4D X-ray CT zu beobachten, wird es uns ermöglichen, einen Entscheidenden Schritt vorwärts in der Gashydrat- und Hangstabilitätsforschung zu machen.
Die atlantische meridionale Zirkulation (AMOC) ist wesentlicher Bestandteil der Wärmeflüsse im Klimasystem, deren Veränderung in Bezug auf den künftigen Klimawandel nur schwer vorherzusagen ist. In diesem Projekt richten wir unseren Blick in die Vergangenheit auf das Marine Isotopenstadium (MIS) 11, dass vor rund 410,000 Jahren mit ähnlichen Orbitalparametern zu einer rund 30,000 Jahre andauernden Warmzeit geführt hat. Ein großer Teil des Grönländischen Eisschilds war abgeschmolzen und folglich der Meeresspiegel deutlich gegenüber heute erhöht. Traditionelle Nährstoff-Spurenstoffe liefern Hinweise auf eine starke Tiefenwasserbildung zu dieser besonderen Warmzeit. Um die Herkunft der Wassermassen, deren Strömungswege sowie die Mischungsverhältnisse zu rekonstruieren, hat sich das Isotopenverhältnis 143Nd/144Nd in der authigenen Phase von Tiefseesedimenten als sehr nützlicher Spurenstoff erwiesen. Im Rahmen dieses Projekts, haben wir die Nd-Isotopie aus authigenen Fe-Mn Ablagerungen an zahlreichen ODP/IODP Sedimentkernen, für die Dauer des MIS-11 und der vorangegangenen Eiszeit MIS-12 extrahiert. Im Atlantik ist eine deutliche Zunahme weniger radiogenen Neodyms meßbar, die wahrscheinlich eine stärkere Tiefenwasserbildung selbst in Zeiten einen verstärkten Eisverlustes in Grönland aufweist. Die untersuchten Sedimente bilden den gesamten tiefen Atlantik von Nord nach Süd ab, sowie einige Regionen mit direktem regionalen Einfluß auf die Nd-Isotopie. Neben einer starken Tiefenzirkulation während MIS-11 konnte auch ein wichtiger Beitrag von Wasser aus der Arktis (nahe der Island-Schottland-Schwelle), sowie ein langanhaltender Einfluss von Wasser der Labrador See nachgewiesen werden. Im tiefen Westatlantik sind über den gesamten Zeitraum des Interglazials sehr unradiogenen Nd Isotopenwerte vorzufinden. In diesem Fortsetzungsprojekt, möchten wir die zeitliche Auflösung der Nd-Isotopenuntersuchungen einiger Sedimentkerne aus der Labradorsee und dem Kapbecken verbessern und die Publikation der Ergebnisse mit Fokus auf den Vergleich von MIS-11 und einem zukünftig wärmeren Klima vorantreiben und bewerten.
Infolge der langjährigen, intensiven Erdöl-Exploration im Qaidam-Becken wird in den Archiven des Saline Lake Institute Xining eine große Menge erbohrten Kern-Material gelagert, welches prinzipiell ein großes Potential für paläoklimatische Untersuchungen im Quartär Nordwest-Chinas und insgesamt in der nördlichen Hemissphäre darstellt. Die bereits bestehende Kooperation mit Prof. Sun Zhencheng von der University of Petroleum (Peking) ermöglicht uns die Nutzung des vorliegenden Materials, die im Antrag eingeschlossene Informationsreise soll zur Sichtung des Kern-Materials genutzt werden, um zu klären, welches konkrete Material unserer Arbeitsgruppe zur Verfügung steht und wie die Beschaffenheit diesen Materials zu bewerten ist: Fossilreichtum, Erhaltungszustand des Fossilmaterials, Länge der Kernstrecke und der damit erfassten Zeitspanne und Durchgängigkeit der Kernstrecke sowie mögliche Beeinträchtigungen durch die Art der Proben-Lagerung sind zu bewerten. Im Anschluss an die Informationsreise soll dann entsprechend der vorgefundenen Gegebenheit ein Arbeitsprogramm entworfen werden, welches im Falle günstiger Voraussetzungen sowie guter Kooperationsmöglichkeiten mit dem Saline Lake Institute Xining in einen Fortsetzungsantrag bei der DFG münden soll.
Es wird angenommen, dass Süßwasser Einträge während Entgletscherungsereignissen einen wichtigen Einfluss auf die globale geostrophische Zirkulation haben, da die Tiefenwasserbildung und Strömungszirkulation durch plötzliche Temperatur- und Salinitätsabfällen beeinträchtigt oder unterbrochen werden können. Dieser Vorgang kann zu globalen Veränderungen des Klimas führen. Der Ostkanadische Schild und der Kontinentalhang vor Labrador sind Schlüsselregionen für paläoklimatische, sowie paläozeanographische Untersuchungen. Große vergangene und rezente Eisschilde beeinflussten das gesamte Gebiet und entwässerten in die Regionen des Labrador Schelfs entweder direkt durch den Laurentidischen Eisschild oder indirekt durch die Hudson Bucht / Davis Strait durch den Inuitischen- und Grönländischen Eisschild. Bis jetzt wurden Information über die Dynamik des Laurentidischen Eisschilds hauptsächlich aus Sedimentkernen aus den Eis-distalen Bereichen wie der Labradorsee und dem Nord Atlantik abgeleitet. Auf dem Labradorschelf wurden hauptsächlich Untersuchungen an Holozänen Sequenzen durchgeführt und Informationen über glaziale Ablagerungen sind eher selten. Informationen aus dem Bereich des Festlands beziehen sich meistens auf die Datierung und die Beschreibung von geomorphologischen Merkmalen, jedoch fehlen kontinuierliche Archive oder Informationen zu Strukturen, die älter als die aufgeschlossenen glazialen Ablagerungen sind. Während der letzten fünf Jahre haben wir verschiedene seismische-, bathymetrische und Echolot Datensätze auf dem Labradorschelf, im Melville See und im Manicouagan See aufgezeichnet. Die Daten zeigen das Vorkommen von erhaltenen oder teilweise überlagerten glazialen Strukturen wie Moränen, Drumlins, groß-skaligen glazialen Lineationen und Eisbergschrammen. Diese vorgeschlagenen Studie fokussiert sich auf die Untersuchung des marinen Endmembers auf dem Labradorschelf, der brackischen Übergangszone in der Hudson Bucht / Straße und dem terrestrischen Endmember im Manicouagan See. Seismische und hydroakustischen Daten werden untersucht um den Verlauf des Laurentidischen Eisschilds während vergangenen (prä-Wisconsian) Vereisungen zu rekonstruieren und Orte, die möglicherweise lange paläoklimatische- und paläozeanographische Archive aufweisen, identifiziert. Das Ziel dieser Studie ist die Identifikation von potentiellen Bohrlokationen, die lange, ungestörte geologische Archive mit prä-Holozäner Ablagerungen aufweisen. Diese Erkenntnisse werden eine solide Basis für einen zukünftigen MagellanPlus Workshop darstellen um eine Bohrgemeinschaft zu bilden, die ein zukünftiges amphibisches IODP-ICDP Bohrproject initiieren wird.
Die Tiefsee ist das größte Ökosystem auf der Erde, das uns aufgrund der Unerreichbarkeit und immensen Ausdehnung in weiten Teilen noch fremd ist. Wegen der geringen Verbreitung von Tiefsee-Sedimenten auf dem Festland und dem Mangel einer kontinuierlichen Fossil-Überlieferung ist unsere Kenntnis über Tiefseepaläobiogeographie und Tiefsee-Evolution ebenfalls recht limitiert. Eine Sichtung unterkretazischer bis obermiozäner Sedimente in ODP/DSDP/IODP-Bohrkernen (Paläoablagerungstiefe: tiefes Bathyal über 2000 m) erbrachte überraschende Ergebnisse: Sklerite von Echinodermata (Holothurien, Ophiuren, Asteroideen, Crinoiden), die heute einen wichtigen Anteil der Tiefseefaunafauna stellen, fehlen nahezu völlig. Dafür sind Stacheln von irregulären Echiniden (Holasteroida, Spatangoida: Atelostomata) häufig. Da die Stacheln morphologisch sehr variabel sind, bergen Klassifizierung der morphologischen Bandbreite ('Morphospace'), der Morphospace-Veränderung in der Zeit und die berechnete Stachel-Akkumulationsrate das Potential, Diversitäts- und Abundanz-Veränderungen in Bezug zu globalem Klimawandel zu kartieren. Da die derzeitige globale Erwärmung besonders in offenen Ozeanen zu geringerer Produktivität und verringertem Export von Organik in die Tiefsee führt, eignet sich der östliche tropische Pazifik als Modell-Region um zwei Arbeitshypothesen zu testen. i) Die Stachel-Diversität der Atelostomata korreliert invers mit känozoischen Warmzeiten, was die 'Productivity-Diversity Relation' stützt; und ii) Die Abundanz von Atelostomata-Stacheln als Ausdruck von Biomasse und Export-Productivity ist geringer in warmen Perioden als in kühlen. Für das Projekt wurde exemplarisch känozoisches Material aus einer sich rapide ändernden Welt berücksichtigt (Abkühlung Mittel-Miozän, mittelmiozänes Klimaoptimum, Abkühlung oberstes Oligozän, Warmphase Ober-Oligozän, oligozäne Oi-2 Eiszeiten & Nachspiel). Klassifizierbare Merkmale der Stacheln (z.B. Morphologie des Schaftes, Anwesenheit, Verteilung, Häufigkeit von Stacheln und Dornen, Form/Anzahl von Poren, Form der Stachelspitze u.a.) werden in eine Datenmatrix eingepflegt und statistisch ausgewertet. Variationen der Stachel-Diversität (Shannon-Wiener-Index) sind Ausdruck sich verändernder Biodiversität, und eine Abnahme der Diversität sowie der Stachel-Akkumulationsrate werden in Kontext mit Warmphasen vermutet. Eine 'Principal Component Analysis' von Stachel-Vergesellschaftungen einzelner Zeitintervalle ermöglicht es, die Disparität des Morphospace der berücksichtigten Intervalle zu erarbeiten. Hieraus lassen sich darüber hinaus Aussagen über graduelle (Evolution?) oder abrupte (Aussterben und Speziation/Immigration) Faunenveränderungen in der Tiefsee treffen, die in Beziehung zu schwankender Primärproduktivität durch globale Temperaturschwankungen gesetzt werden können (Hypothese 2).
Die polaren Eiskappen bilden ein wertvolles Archiv, das atmosphärische und klimatische Vorgänge der Vergangenheit widerspiegelt. Die intensive Untersuchung von Eisbohrkernen erlaubt insbesondere das Paleo-Klima der Erde bis zu etwa 800,000 Jahre zurückzuverfolgen. Indirekte Datierungen von Eis in den Dry Valleys der Antarktis deuten darauf hin, dass Eis im Bereich von Millionen von Jahren existiert. Bisher war es aber nicht möglich dieses Eis direkt zu datieren. Das gegenwärtige Proposal schlägt die Verwendung von zwei kosmogenen Radioisotopen, 10Be (t1/2 = 1.386 Ma) und 26Al (t1/2 = 0.717 Ma) vor, deren Atom-Verhältnis, 26Al/10Be, als Chronometer für altes Eis verwendet werden kann. In einem geschlossenen System, wie es Eis sein könnte, nimmt das anfängliche 26Al/10Be Verhältnis mit zunehmendem Alter mit einer effektiven Halbwertszeit von 1.49 Ma ab. Das Verhältnis von zwei Radioisotopen mit ähnlichen Eigenschaften, sowohl die Produktion durch kosmische Strahlung als auch den atmosphärischen Transport betreffend, scheint besser geeignet für eine zuverlässige Datierung als ein einzelnes Radioisotope. Damit die Methode funktioniert, müssen folgende Voraussetzungen erfüllt sein: i) Das 26Al/10Be-Verhältnis im Niederschlag muss global sowohl örtlich als auch zeitlich konstant sein, ii) es darf außerdem nicht anfällig für Fraktionierung der beiden Radioisotope nach dem Einschluss ins Eis sein. Unser Ziel ist es, die Anwendbarkeit der Methode zur direkten Datierung von Eis im Bereich von 0.5 bis 5 Millionen Jahren experimentell zu beweisen. In einem vorhergegangenen FWF Projekt (P17442-N02, 'Das Studium von kosmogenem 26Al in Atmosphären- und Klimaforschung') wurden detaillierte Studien über das bis dahin nur schlecht bekannte meteorische 26Al und erste Messungen des 26Al/10Be Verhältnisses in der Atmosphäre und in tiefem Eis mit vielversprechendem Erfolg durchgeführt (Auer et al., Earth Planet. Sci, Lett., in press). Unser Vorschlag hier ist nun i) eine deutliche Verbesserung der analytischen Aspekte der Datierungsmethode gegenüber dem vorhergehenden Projekt, insbesondere eine wesentliche Verringerung der erforderlichen Eismenge und eine Ausweitung der Methode für Eis, das starke mineralische Verunreinigungen enthält, ii) eine Klärung der Ursachen für beobachtete Abweichungen (Fraktionierung) des 26Al/10Be Verhältnisses in tiefen Eisproben, und iii) eine Anwendung der geeignet verbesserten Methode zur Datierung von basalem Eis von Bohrkernen und von Millionen Jahre altem Eis von 'rock glaciers' in der Antarktis. Ein wichtiger Teil des Projekts ist die enge Zusammenarbeit mit der Eisgruppe des Instituts für Umweltphysik der Universität Heidelberg, welche uns in allen Aspekten die Eisproben betreffend zur Seite stehen wird. usw.
Kraterböden von Impaktstrukturen terrestrischer Planeten, sogenannte Impaktbecken, sind weitgehend flach und durch mindestens zwei morphologische Ringe gekennzeichnet. Die Mechanismen der Bildung des innersten Ringes, des Peakrings, sowie die mechanische Schwächung von Zielgesteinen, die für die Bildung flacher Kraterböden verantwortlich ist, sind immer noch unbekannt. Die Entschlüsselung dieser Mechanismen sind die vorrangigen strukturgeologischen Ziele der Expedition 364 Drilling the K-Pg Impact Crater und des vorliegenden Forschungsvorhabens, das die Chicxulub Impaktstruktur (Mexiko) als terrestrisches Analogon für die Bildung planetarer Impaktbecken nutzt. Insbesondere soll der Bohrkern hinsichtlich (1) impaktinduzierter Deformationsmechanismen, (2) Schwächung der Zielgesteine während der Kraterbildung, (3) Kinematik der Verformung und (4) struktureller Hinweise für langzeitliche Ausgleichsbewegungen der Kruste unterhalb des Kraters untersucht werden. Dies wird methodisch durch die Analyse von Mikrogefügen mithilfe quantitativer Bildanalyse unter Verwendung einer selbst entwickelten Routine, Mikrosonde-Analysen, Televiewer-Daten sowie durch hochauflösende 3D volumetrische Bildanalyse mittels röntgenographischer Mikrotomographie erreicht. Die gewonnen Strukturdaten werden mit äquivalenten Daten der Sudbury-Impaktstruktur (Kanada) verglichen, um aus der eindimensionalen Information der Bohrung im Rahmen der Expedition 364 ein umfassenderes strukturelles Verständnis großer Meteoriteneinschläge terrestrischer Planeten zu gewinnen.
| Origin | Count |
|---|---|
| Bund | 589 |
| Land | 28 |
| Wissenschaft | 19 |
| Type | Count |
|---|---|
| Daten und Messstellen | 9 |
| Förderprogramm | 530 |
| Text | 70 |
| unbekannt | 21 |
| License | Count |
|---|---|
| geschlossen | 74 |
| offen | 553 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 574 |
| Englisch | 176 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 4 |
| Datei | 8 |
| Dokument | 27 |
| Keine | 321 |
| Multimedia | 1 |
| Webdienst | 4 |
| Webseite | 276 |
| Topic | Count |
|---|---|
| Boden | 630 |
| Lebewesen und Lebensräume | 464 |
| Luft | 384 |
| Mensch und Umwelt | 630 |
| Wasser | 452 |
| Weitere | 607 |