Das Forschungsvorhaben soll zur Rekonstruktion der Klima- und insbesondere der Monsunvariabilität in Südwestchina beitragen. Anhand von Bohrkernen klimasensitiver Bäume entlang klimatischer Höhengradienten sollen Jahrringchronologien mehrerer Baumarten für die letzten ca. 500 Jahre erstellt werden. Diese bilden die Basis zur Rekonstruktion verschiedener saisonaler Klimaelemente, die dann zum Witterungsverlauf während des gesamten Jahres rekombiniert werden. Durch die dendrochronologische Datierung verschieden alter Moränen soll die Gletschergeschichte der letzten Jahrhunderte rekonstruiert werden. Diese Daten werden durch Altersdatierungen mit der C14-Methode von fossilen Pflanzen- und Bodenresten ergänzt. Ein Vergleich der Gletschergeschichte des Gongga Shan mit dem zentralen Osttibet soll Unterschiede in der Dynamik des ostasiatischen Zweigs des Monsunsystems und des Indischen Monsunsystems zutage treten lassen. In Zusammenarbeit mit Prof. Richter (Erlangen) werden Studien zum Bestandesalter und zur Vegetationsdynamik von Pflanzenbeständen durchgeführt, die auf den Obermoränen der rezenten Gletscher gedeihen. Studien zum Entwicklungsgrad der Böden und der Bodentemperaturen im Wurzelraum dienen der besseren ökologischen Interpretation der dendrochronologischen Befunde.
Die atlantische meridionale Zirkulation (AMOC) ist wesentlicher Bestandteil der Wärmeflüsse im Klimasystem, deren Veränderung in Bezug auf den künftigen Klimawandel nur schwer vorherzusagen ist. In diesem Projekt richten wir unseren Blick in die Vergangenheit auf das Marine Isotopenstadium (MIS) 11, dass vor rund 410,000 Jahren mit ähnlichen Orbitalparametern zu einer rund 30,000 Jahre andauernden Warmzeit geführt hat. Ein großer Teil des Grönländischen Eisschilds war abgeschmolzen und folglich der Meeresspiegel deutlich gegenüber heute erhöht. Traditionelle Nährstoff-Spurenstoffe liefern Hinweise auf eine starke Tiefenwasserbildung zu dieser besonderen Warmzeit. Um die Herkunft der Wassermassen, deren Strömungswege sowie die Mischungsverhältnisse zu rekonstruieren, hat sich das Isotopenverhältnis 143Nd/144Nd in der authigenen Phase von Tiefseesedimenten als sehr nützlicher Spurenstoff erwiesen. Im Rahmen dieses Projekts, haben wir die Nd-Isotopie aus authigenen Fe-Mn Ablagerungen an zahlreichen ODP/IODP Sedimentkernen, für die Dauer des MIS-11 und der vorangegangenen Eiszeit MIS-12 extrahiert. Im Atlantik ist eine deutliche Zunahme weniger radiogenen Neodyms meßbar, die wahrscheinlich eine stärkere Tiefenwasserbildung selbst in Zeiten einen verstärkten Eisverlustes in Grönland aufweist. Die untersuchten Sedimente bilden den gesamten tiefen Atlantik von Nord nach Süd ab, sowie einige Regionen mit direktem regionalen Einfluß auf die Nd-Isotopie. Neben einer starken Tiefenzirkulation während MIS-11 konnte auch ein wichtiger Beitrag von Wasser aus der Arktis (nahe der Island-Schottland-Schwelle), sowie ein langanhaltender Einfluss von Wasser der Labrador See nachgewiesen werden. Im tiefen Westatlantik sind über den gesamten Zeitraum des Interglazials sehr unradiogenen Nd Isotopenwerte vorzufinden. In diesem Fortsetzungsprojekt, möchten wir die zeitliche Auflösung der Nd-Isotopenuntersuchungen einiger Sedimentkerne aus der Labradorsee und dem Kapbecken verbessern und die Publikation der Ergebnisse mit Fokus auf den Vergleich von MIS-11 und einem zukünftig wärmeren Klima vorantreiben und bewerten.
Die Klima-, Vegetations- und Kulturlandschaftsgeschichte des größten alpinen Ökosystems Afrikas soll durch Analyse von neun Bohrkernen im Bale Mountains National Park, Süd-Äthiopien mittels Pollen- und Pilzsporenanalyse, Holzkohlen- und Makrorest-Analyse rekonstruiert werden, um die Hypothese einer frühen Anwesenheit von Jägern und Hirten in einem nach Mehrheitsmeinung und derzeitigem Kenntnisstand erst spät durch Feuer und Beweidung beeinflussten Hochland zu testen. Die Zusammenarbeit mit Vegetations- (plotbasierte, floristisch vollständige Transekte) und Klimaökologie (10 Klimastationen) macht eine Kalibrierung von Sporopollen-Oberflächenproben möglich; Pollentypen können durch ökologische Zeigerwerte von Pflanzen (klimatisch/edaphisch/anthropozoogen) determiniert werden. Hochaufgelöste Pollen- und Holzkohle-Stratigraphien von neun vorgesehenen Bohrpunkten erlauben die Datierung, Dauer und Intensität menschlicher Eingriffe zu bestimmen und auch zu entscheiden, wie menschverursachte Störung (vor allem Feuer) von natürlichen Störungen zu unterscheiden sind. Dungsporen sollen helfen, die Haustierbeweidung und Wildtierbeweidung abzuschätzen. Die Interpretation wird abgesichert durch den Vergleich mit Multi-Proxies (XRF-Geochemie, stabile Isotope, Diatomeen, Coleoptera-Reste) aus den Bohrkernen und den Analysen der archäologischen, Anthrosol-, und Paläoklima-Analysen, womit die Modellierung der Umweltgeschichte der Bale Mountains möglich wird.
Mit detaillierten sedimentologischen und geochemischen Analysen sollen die kleinskaligen Klimaänderungen und ihre Auswirkung auf Sedimentexport analysiert werden. Neben Gezeiten und Hurricanes erzeugen die Passage von Kaltwasserfronten einen wichtigen Transportmechanismus für die Verfrachtung von Karbonatschlämmen von einer flachen Karbonatplattform in tiefere Hangbereiche. Die Anwendung von Magnesium-Thermometrie für die Berechnung von Paläo-Oberflächentemperaturen wird die klimatischen Rahmenbedingungen gut charakterisieren können. Das hier beantragte Vorhaben konzentriert sich auf die Auswertung von Sedimentmaterial, das im Rahmen der fünften Expedition des internationalen IMAGES Projektes im Juni in der Nähe der Großen Bahama Bank gewonnen wurde. Feinskalige sedimentologische und geochemische Profile sollen für das Holozän entlang eines 38 m langen Sedimentkernes erstellt werden. Damit sollen kurzfristige Variabilitäten in der Karbonatproduktion der Großen Bahama Bank in Bezug zu hochfrequenten Klimaänderungen gesetzt werden.
Die Lebensgrundlage von mehr als 2 Milliarden Menschen ist abhängig von den Regenfällen des asiatischen Monsuns, die sogar mit den am weitesten entwickelten gekoppelten Ozean-Atmosphäremodellen immer noch schwer vorhersagbar sind. Ein detailliertes Verständnis darüber, wie sich der Monsun unter veränderten Randbedingungen wie einer wärmeren Welt mit geringerer kontinentaler Eisbedeckung verändert, ist von zentraler Bedeutung für diese Modelle. Wir müssen ebenso verstehen, wie und wann die Intensivierung des Monsunsystems einsetzte, wie es sich danach entwickelte und wie es sich in Abhängigkeit von verschiedenen potentiellen Faktoren wie globalen Klimaveränderungen, Gebirgsbildungen und der Öffnung und Schließung von Meeresstraßen veränderte. Der Zeitpunkt der Intensivierung wird kontrovers diskutiert, wobei einige Aufzeichnungen (Auftrieb in der Arabischen See) einen Zeitraum zwischen 7 und 8 Millionen Jahren anzeigen, während andere (Loess-Ablagerungen) ein viel früheres Einsetzen vor 22 Million Jahren oder sogar noch früher nahelegen. Ergebnisse von Modellierungen zeigen an, dass die Heraushebung von Tibet und damit Tektonik und das globale Klima direkt mit der Intensivierung des Monsunsystems zusammenhingen. Wir schlagen in diesem Projekt vor, die Entwicklung des Indischen Monsuns während es Miozäns (vor 23 bis 5.6 Millionen Jahren) anhand neuer, hochqualitativer Sedimentkerne aus dem Golf von Bengalen (Exp. 353) zu rekonstruieren. Wir werden die Kopplung der kontinentalen Verwitterung in der Region mit dem globalen Klima untersuchen. Anhand von hochaufgelösten Aufzeichnungen der von den Monsunwinden angetriebenen vertikalen Durchmischung des Oberflächenozeans auf orbitalen Zeitskalen, von durch Monsunpräzipitation verursachten Salinitätsänderungen und dem Verwitterungseintrag von Spurenmetallen wird diese Studie unser Verständnis der Entwicklung des asiatischen Monsuns signifikant verbessern und zu einer genaueren Modellierung des Monsunsystems beitragen.
Mögliche Korrelationen zwischen der taxonomischen Zusammensetzung mikrobieller Biofilmen, die offene Felsen aus hartem magmatischen Gestein besiedeln, und einer Verwitterung bzw. Erosion der Felsoberflächen zu untersuchen sind wichtige Ziele dieses Projektes. Die Diversität sowohl phototrophe (Cyanobakterien, eukaryotische Algen) als auch heterotrophe (andere Prokaryoten und Mikropilze) Biofilm-Komponenten werden mit New Generation Sequencing (NGS) möglichst umfassend bestimmt. Zusätzlich werden auch Kulturen der phototrophen Biofilmorganismen untersucht. Veränderungen der mikrobiellen Lebensgemeinschaften auf und im Gestein werden entlang eines klimatischen Gradienten in Bezug auf Feuchtigkeit und Temperatur untersucht. Dazu dienen Proben von Biofilmen und Bohrkernen aus drei klimatisch unterschiedlichen Zonen in der Küsten-nahen Cordillera Region in Chile, d.h. den ausgewiesenen primären Schwerpunktuntersuchungsarealen des SPP 1803. Verschiedene Sukzessionsstadien der Biofilme ergeben zusammen mit Altersbestimmung anhand von 14C Beschleunigungs-Massenspektrometrie eine biologische Zeitskala. Für einen breiteren Einblick in die Funktionalität von Diversitätsveränderungen in den Biofilmen dienen sowohl hoch auflösende Flächenanalytik von Hartteilschnitten als auch biochemische Analysen zum Nachweis Signaturen mikrobiellen Stoffwechsels an der Schnittstelle Biofilm/Fels. Die räumliche Verteilung und relative Abundanzen der verschiedenen Organismengruppen innerhalb der Biofilme werden mithilfe der in situ Hybridisierung und Fluoreszenzmikroskopie untersucht. Parallel dazu werden exponierte künstliche Hartsteinsubstrate auf eine Entwicklung der Besiedelung und Verwitterung untersucht. Ebenfalls für das Erstellen einer biologischen Zeitskala der Verwitterung dienen Analysen von Detritus in nächster Nähe der untersuchten Felsen, d.h. Gesteinspartikel mit Biofilmen dar, die aufgrund der Verwitterung bereits vom Felskörper abgefallen sind. Die Zusammensetzung mikrobieller Gemeinschaften des Detritus gibt möglicherweise Hinweise auf den Beginn dessen Besiedlung und in einem späteren Stadium auch des Bodens, der sich aus dem Detritus bildet. Somit ergibt sich hier eine Schnittstelle von der biogenen Gesteinsverwitterung zur Besiedlung von Böden. Um Effekte der Erosion durch Biofilme untersuchen zu können und zur Etablierung einer geologischen Zeitskala dienen Analysen kosmogener Nuklide (CNA). Damit wird analysiert 1) ob und wenn ja welche Beziehungen zwischen der artlichen (OTU) Zusammensetzung der Biofilme und Erosion der Felsoberflächen bestehen und 2) eine graduelle Erosion der Oberfläche, d.h. Biodeterioration, stattfindet. In dem ariden nördlichen Untersuchungsgebiet (Atacama Wüste) sind auch Felsen ohne nachweisbaren Biofilm zu erwarten. Vergleiche der Konzentrationen kosmogener Nuklide von Proben mit und ohne Biofilm werden dann zeigen, ob und in wie fern Biofilme die Oberflächenverwitterung über lange Zeiträume hinweg beeinflussen.
Der Western Boundary Undercurrent (WBUC) ist eine kritische Komponente der globalen Umwälzzirkulation und wird durch Tiefenwasserbildung in der Grönland-, Labrador-, Island- und Norwegischen See angetrieben. Seismische Profile der Eirik Drift weisen auf eine hohe Variabilität der Geschwindigkeiten und Strömungspfade des WBUC seit dem frühen Miozän hin und geben Hinweise auf das Gebiet der Tiefenwasserbildung vom Miozän bis heute. Wir beabsichtigen die Mechanismen, welche in der Verschiebung der Gebiete der Tiefenwasserbildung und der Verschiebung der Strömungspfade des WBUC involviert sind, zu identifizieren. Korngrößen sind für ODP Leg 105 und die IODP Expedition 303 Sites U2305-2307 in der Eirik Drift verfügbar (iodp.tamu.edu). Die Unterscheidung in Ton (kleiner als 0.004 mm), Schlamm (0.004-0.063 mm) und Sand (mehr als 0.063 mm) ist ausreichend um Geschwindigkeiten des WBUC für verschiedene Zeitscheiben abzuleiten. Dreidimensionale Geschwindigkeiten und Sedimenttransporte werden mit dem Regional Ocean Modelling System (ROMS) simuliert. ROMS wird auf den Nordatlantik regionalisiert werden und dabei detaillierte Informationen über Gebiete der Tiefenwasserbildung und Ozeanzirkulation liefern. Seismische Profile aus der Eirik Drift (Uenzelmann-Neben (2013)) stellen Horizonttiefen, Schichtdicken und Position und Orientierung von Depozentren zur Verfügung. Diese sind in Kombination mit Korngrößen eine Validierungsmöglichkeit für den in ROMS modellierten Sedimenttransport. Durch den numerischen Ansatz ist es möglich, Prozesse hervorzuheben oder zu vernachlässigen. Hierdurch können Sensitivitätsstudien bezüglich des Einflusses sich verändernden Klimas und tektonischer Zustände auf die tiefe Ozeanzirkulation und den Sedimenttransport durchgeführt werden. Müller-Michaelis und Uenzelmann-Neben (2014) führten Variabilität im Sedimenttransport in der Eirik Drift auf Veränderungen in der Stärke und des Strömungspfades des WBUC zurück, welche durch unterschiedliche Gebiete der Tiefenwasserbildung hervorgerufen wurden. Diese Hypothese kann mit dem regionalen Model getestet werden und die klimatologischen Ursachen für die Veränderung der Gebiete der Tiefenwasserbildung können identifiziert werden. Der Strömungspfad des WBUC ist zusätzlich durch tektonische Veränderungen beeinflusst, z.B. die Subsidenz des Grönland-Schottland-Rückens oder der Schließung des Zentralamerikanischen Durchflusses. Der Einfluss tektonischer Veränderungen auf die Stärke und Strömungspfade des WBUC als auch auf Sedimentationsraten und Korngrößen wird in diesem Projekt betrachtet. Wir werden daher eine Verbindung zwischen Sedimentationsraten und Korngrößen, wie sie in den Bohrkernen von Sites 646 und U1305-1307 gemessen wurden, und klimatologisch und tektonisch hervorgerufener Änderungen der Geschwindigkeiten und Strömungspfade des WBUC herstellen.
Die Erdoberfläche verändert sich stetig aufgrund komplexer Wechselwirkungen zwischen Klima, Hydrologie, Vegetation, Verwitterung, Erosion und Sedimentablagerung und beeinflusst so unseren Lebensraum. Die Mechanismen sowie die Magnitude und zeitliche Abfolge mit der sich klimatische Veränderungen auf Vegetation, Verwitterung, Erosion und Sedimentdynamiken auswirken, sind jedoch nur unzureichend verstanden - dies erschwert die Interpretation von marinen Sedimentarchiven in Bezug auf das Paläoklima und Erdoberflächenprozesse. In marinen Sedimentarchiven vor der chilenischen Küste finden sich aber konkrete Hinweise auf einen direkten Zusammenhang zwischen Klima und Erdoberflächenprozessen, denn während an Land zu Beginn des Holozäns zunehmende Trockenheit einsetzt, verringern sich zeitgleich die Sedimentakkumulation im Ozean. In diesem Projekt wollen wir die Magnituden und zeitlichen Abfolgen von Änderungen in der Vegetation, Hydrologie, Verwitterungs- und Erosionsraten und Sedimentablagerung im Pazifischen Ozean vom letzten glazialen Maximum (LGM) bis heute entlang der chilenischen Küste quantifizieren. In diesem Projekt vernetzen wir die Forschungsdisziplinen der Sedimentologie, Geochemie und Biologie um die Feedbacks zwischen diesen Parametern zu untersuchen. Wir postulieren, dass der Einfluss der deglazialen Klimaveränderung auf die Landschaftsentwicklung stark durch die Vegetation moduliert ist. Dadurch existieren Zeitverzögerungen zwischen den untersuchten Parametern. Mit diesem Antrag schlagen wir einen neuen Ansatz vor, der auf der Anwendung hochspezialisierter organisch- und anorganisch-geochemischer Proxy Methoden basiert. Dazu sollen Biomarker Isotopenanalysen (Delta D, Delta 13C, als Proxy für Vegetation und Hydrologie), stabile Lithium Isotopenanalysen (Delta 7Li, als Proxy für Verwitterung) und kosmogene Nuklide (meteorische 9Be/10Be Verhältnisse, als Proxy für Erosion) kombiniert werden und an den gleichen marinen Sedimentkernen angewandt werden. In einem ersten Arbeitspaket (WP1) werden wir die heutigen räumlichen Unterschiede entlang des ausgeprägten N-S Klimagradienten der chilenischen Küste evaluieren und diese Proxies auf ihre Sensitivität kalibrieren. Dazu ist die Analyse der modernen Erosionsprodukte, die durch die Flüsse in den Ozean transportiert werden, sowie mariner Oberflächensedimente vorgesehen. In AP 2 (WP2) wenden wir die so kalibrierten Methoden an drei marinen Sedimentkernen entlang der chilenischen Küste an, um Veränderungen in Klima, Vegetation, Verwitterung, Erosion und Sedimenteintrag sowie deren zeitliche Abfolge und räumlichen Muster am gleichen Material zu rekonstruieren. Diese neuartige Kombination von Proxy Methoden und deren detaillierte Kalibration und Sensitivitätsanalyse werden es ermöglichen, die Mechanismen von räumlichen und zeitlichen Unterschieden in der Reaktion von Vegetation, Verwitterung, Erosion, und Sedimentablagerung auf eine klimatisch-induzierte hydrologische Veränderungen zu quantifizieren.
Gegenstand des beantragten Projekts ist die Spaltspuranalyse von Bohrkernproben aus der Delitzsch-Torgau-Doberlug-Synklinalzone zur Rekonstruktion der regionalen neoproterozoischen und phanerozoischen Exhumierungsgeschichte. Thematische Schwerpunkte sind die Herkunft der variszischen Sedimente, die maximale Versenkungstiefe der heute anstehenden oder erbohrten Gesteine, der Einfluss von Granitintrusionen und variszischer metamorpher Überprägungen auf das Umfeld, die Datierung von Exhumierungsphasen und die Bestimmung von Mechanismen zur Hebung/Exhumierung und Beckeninversion. Wesentliche Parameter, die die langfristige Landschaftsentwicklung der Delitzsch-Torgau-Doberlug-Synklinalzone kontrollieren (Paläotemperaturen, Denudation, Paläotopographie), sollen gedeutet und in Kartenserien dokumentiert werden. Zudem soll die Exhumierungsgeschichte der Delitzsch-Torgau-Doberlug-Synklinalzone mit jener der angrenzenden Krustenblöcke korreliert werden.
| Origin | Count |
|---|---|
| Bund | 589 |
| Land | 28 |
| Wissenschaft | 19 |
| Type | Count |
|---|---|
| Daten und Messstellen | 9 |
| Förderprogramm | 530 |
| Text | 70 |
| unbekannt | 21 |
| License | Count |
|---|---|
| geschlossen | 74 |
| offen | 553 |
| unbekannt | 3 |
| Language | Count |
|---|---|
| Deutsch | 574 |
| Englisch | 176 |
| Resource type | Count |
|---|---|
| Archiv | 2 |
| Bild | 4 |
| Datei | 8 |
| Dokument | 27 |
| Keine | 321 |
| Multimedia | 1 |
| Webdienst | 4 |
| Webseite | 276 |
| Topic | Count |
|---|---|
| Boden | 630 |
| Lebewesen und Lebensräume | 464 |
| Luft | 384 |
| Mensch und Umwelt | 630 |
| Wasser | 452 |
| Weitere | 607 |