API src

Found 24 results.

Related terms

Zukuenftige Einsatzmoeglichkeiten der Hochtemperaturbrennstoffzelle im Energieversorgungssystem

Ziel ist es, die zukuenftigen Einsatzmoeglichkeiten und Einsatzgebiete der Hochtemperaturbrennstoffzelle im Energieversorgungssystem der Bundesrepublik Deutschland sowie ihren Beitrag zu effizienten, ressourcen- und umweltschonenden Energieversorgung zu beschreiben.

Carbonate Looping mit einer mobilen Anlage, Teilvorhaben: Auslegung und Betrieb einer mobilen Anlage und Prozessbilanzierung

KI-Anwendungshub Kunststoffverpackungen - Innovationslabor - KI gestützte Optimierung der Kreislaufführung von Kunststoffverpackungen, Teilprojekt: Stoffstrommanagement und Nachhaltigkeitsbewertung einer digitalisierten Kreislaufwirtschaft

Optimierung und Bewertung von Prozessketten zur chemischen CO2-Verwertung für die Emissionsminderung in der Zementindustrie

Weiterentwicklung des Sprühwäscheprozesses zur Abtrennung von CO2 aus Kraftwerksrauchgasen

Ziel des Projektes ist die wissenschaftliche Untersuchung und Weiterentwicklung der nachgeschalteten CO2-Abtrennung durch einen Sprühwäscheprozess aus Kraftwerksrauchgasen. Der Fokus liegt in der Entwicklung eines effizienten und wirtschaftlichen Sprühabsorptionsverfahrens unter größtmöglicher Lastflexibilität. Dazu soll der Prozess im Versuchsbetrieb im Technikumsmaßstab optimiert werden, während gleichzeitig besonders geeignete Absorptionsmittel gezielt untersucht und verbessert werden. Die energetische und wirtschaftliche Bewertung des Prozesses ermöglicht die Abschätzung des Energiebedarfs und der CO2-Vermeidungskosten. Für die experimentellen Untersuchungen steht die im Vorgängerprojekt installierte Versuchsanlage zur Verfügung, die punktuell modifiziert werden soll. Schwerpunkte der Betrachtungen liegen auf der Abhängigkeit des Absorptionsprozesses vom Lastfall, d.h. von Rauchgasstrom und -zusammensetzung sowie von der Spraycharakteristik. Auch das dynamische Verhalten beim Übergang zwischen Lastzuständen soll untersucht werden. Für die detaillierte Bestimmung der Absorptionsraten unter realistischen Strömungsbedingungen wird ein Tropfenschwarmabsorber in einen Bypass der Versuchsanlage integriert. Die Ergebnisse sollen die Vorteile der Sprühwäsche gegenüber der Verwendung von Packungskolonnen wie z.B. den flexibleren Lastbereich, niedrigeren Druckverlust und die Verwendbarkeit einer größeren Bandbreite an Absorptionsmitteln nutzbar machen. Weiterhin sollen durch den Einbau von unterschiedlichen Zerstäuberdüsen und Wandabstreifern Möglichkeiten für die Prozessintensivierung betrachtet werden. Die Degradation des Absorptionsmittels wird beobachtet, um Rückschlüsse auf das erforderlichen Solvent Management ziehen zu können. Die energetische und wirtschaftliche Bewertung des Prozesses unter Berücksichtigung von Kraftwerksflexibilität, Anlagenkonfiguration und Absorptionsmitteln hinsichtlich Energiebedarf und CO2-Vermeidungskosten schließt das Projekt ab.

Erweiterung und Optimierung einer 1 MWth Versuchsanlage zur CO2-Abscheidung aus Kohlekraftwerken mittels Kalkstein

Das Carbonate-Looping-Verfahren ist eine effiziente Technologie zur CO2-Abscheidung aus Kraftwerksabgasen mittels CaO. Bisherige Untersuchungen versprechen deutlich niedrigere Wirkungsgradverluste und CO2-Vermeidungskosten im Vergleich mit anderen Verfahren. An der TU Darmstadt wurde eine der weltweit größten Versuchsanlagen im Maßstab von 1 MWth aufgebaut und betrieben. Ziel des Vorhabens ist die Durchführung von Langzeitversuchen an einer erweiterten Versuchsanlage mit verschiedenen Brennstoffen und Absorbentien in unterschiedlichen Lastzuständen, um den flexiblen und gesicherten Einsatz des Carbonate-Looping-Verfahrens in Kraftwerken eingehend beurteilen zu können und eine ausreichende Datenbasis für die Hochskalierung des Verfahrens zu schaffen. Im Rahmen des Vorhabens soll die 1 MWth Versuchsanlage hinsichtlich ihrer Funktionalität erweitert, neue Brennstoffe (Braunkohle) eingesetzt, Langzeitversuche durchgeführt, Laständerungen vollzogen, und der Einfluss des Schwefel- und H2O-Gehalts auf den Prozess untersucht werden. Anhand von Profilmessungen in den Reaktoren sollen Modelle weiterentwickelt und umfassend validiert werden, welche u.a. zur Optimierung des Reaktordesigns eingesetzt werden. Basierend auf den Versuchsergebnissen sollen mit Hilfe der Modelle der Wirkungsgrad und die CO2-Vermeidungskosten für Kohlekraftwerke mit nachgeschalteter Carbonate-Looping-Anlage neu berechnet werden.

Betrieb der CO2-Wäsche-Pilotanlage^Anschlussvorhaben CO2 Wäsche Pilotanlage, Phase 3', Betrieb der CO2-Wäsche-Pilotanlage zur Optimierung und Innovation der Abtrenntechnik unter realen Betriebsbedingungen an einem braunkohlegefeuerten Kraftwerk - Teilvorhaben Linde: Versuchsbegleitung und Betriebsunterstützung

Die Projektpartner RWE, BASF und Linde haben in den 2 Vorprojekten wesentliche Fortschritte erzielt, um eine CO2-Abscheidetechnologie zu entwickeln, die wesentliche Vorteile bzgl. Wirtschaftlichkeit (Anlagenkosten, Betriebsmittelkosten) und Umweltschutz gegenüber dem Stand der Technik besitzt. Während der Bearbeitung des aktuellen Projektes wurde jedoch ersichtlich, dass weitere Optimierungen bzgl. Emissionen und Anlagen- und Betriebskosten notwendig sind und durch weitere Forschungsarbeiten erreichbar scheinen. Das Gesamtziel der Phase III ist entsprechend die weitere Erhöhung der Umweltfreundlichkeit dieser Klimaschutztechnologie und die Senkung der CO2-Vermeidungskosten von CCS durch Senkung der Investitions- und Betriebskosten der Abtrenntechnik. Linde unterstützt RWE bei der Planung und Durchführung der Modifikation der Pilotanlage zur Durchführung des Testabschnitts 'simuliertes Gasturbinenabgas'. Darüber hinaus werden weitere kleinere Anlagenmodifikationen seitens Linde geplant (Waschmittelkühler, Aerosolmesstechnik). Des Weiteren unterstützt Linde RWE bei der Versuchsplanung und Versuchsauswertung. Bei auftretenden Betriebsproblemen während der Versuchsdurchführung gibt Linde RWE den entsprechenden anlagentechnischen Support. Linde übernimmt zwei Messkampagnen zur Untersuchung der Emissionsbildung bei zwei neuen OASE blue-Varianten. Alle Ergebnisse fließen in die Überarbeitung der Großanlagenstudie ein.

Betrieb der CO2-Wäsche-Pilotanlage zur Optimierung und Innovation der Abtrenntechnik unter realen Betriebsbedingungen an einem braunkohlegefeuerten Kraftwerk - Teilvorhaben Linde: Versuchsbegleitung und Betriebsunterstützung^Betrieb der CO2-Wäsche-Pilotanlage^Anschlussvorhaben CO2 Wäsche Pilotanlage, Phase 3', Folgeprojekt II: Betrieb der CO2-Wäsche-Pilotanlage zur Optimierung und Innovation der Abtrenntechnik unter realen Betriebsbedingungen an einem braunkohlegefeuerten Kraftwerk

Gesamtziele dieses Anschlussvorhabens sind die Reduktion der CO2-Vermeidungskosten von CCS durch Senkung der Investitions- und Betriebskosten der Abtrenntechnik, sowie die innovative Verbesserung der Umweltfreundlichkeit dieser Klimaschutztechnologie. Ein Schwerpunkt ist dementsprechend die Optimierung des Emissionsminderungssystems. Hierbei soll innovative hochauflösende online-Messtechnik in dieser Art erstmalig an einer CO2-Wäsche eingesetzt werden. Darüber hinaus sind die Simulation eines Gasturbinen-Abgases als Rohgas für die CO2-Wäsche, der Test und die Bewertung von zwei neuen OASE blue-Varianten, ggf. ein Langzeittest der optimalen OASE blue-Variante, die Fortführung der Werkstofftests und die Weiterführung der technisch-wirtschaftlichen-ökologischen Konzeptoptimierung zur großtechnischen CO2-Wäscheanlage geplant. Im ersten Jahr soll durch innovative Messtechnik das Emissionsniveau in Abhängigkeit von den eingesetzten emissionsmindernden Maßnahmen, wie z.B. der Minimierung von Aerosolkeimen vor Eintritt in die CO2-Wäsche, systematisch untersucht werden. Im Anschluss soll die Performance des Wäscheprozesses mit 'simuliertem' Rauchgas einer Gasturbine getestet werden, indem Luft dem Rohgas beigefügt wird. Im zweiten Projektjahr werden zwei neue von BASF entwickelte optimierte OASE blue-Varianten getestet. Wenn durch eine der beiden neuen Waschmittelvarianten eine Performanceverbesserung erreicht wird, ist für das dritte Projektjahr eine Langzeituntersuchung vorgesehen.

GuD-POXY: CO2-Abtrennung in GuD-Kraftwerksprozessen mit Post-Combustion und Oxyfuel^GuD-POXY: CO2-Abtrennung in GuD-Kraftwerksprozessen mit Post-Combustion und Oxyfuel, GuD-POXY: CO2-Abtrennung in GuD-Kraftwerksprozessen mit Post-Combustion und Oxyfuel

Aufgrund des höheren spezifischen Energiebedarfs der CO2-Abtrennung sind die CO2-Vermeidungskosten in GuD-Kraftwerken im Allgemeinen höher als in kohlebefeuerten Anlagen. Für den Betreiber eines GuD-Kraftwerks ist es daher von Interesse, abzuwägen, ob Maßnahmen, welche die CO2-Emissionen einer bestimmten Anlage reduzieren, kostengünstiger sind, als der finanzielle Aufwand erhöhter CO2-Emissionen, der in Form von CO2-Steuern oder CO2-Emissionszertifikaten anfällt. Obwohl der energetische und finanzielle Aufwand, die CO2-Emissionen in GuD-Kraftwerken zu reduzieren, im Allgemeinen höher ist als in kohlebefeuerten Anlagen, führen sowohl die geringen Stromerzeugungskosten solcher Anlagen, die Verfügbarkeit des Brennstoffs als auch mögliche zukünftige Gesetzesbestimmungen, die beim Bau solcher Anlagen eingehalten werden müssen (z. B. CO2 Capture-Ready Zertifizierung), dazu, dass die Identifizierung von Möglichkeiten zur CO2-Emissionsreduktion für GuD-Kraftwerke von besonderem Interesse für die Betreiber ist. Für die Realisierung einer CO2-Abtrennung in GuD-Kraftwerken bieten sich die Post-Combustion CO2-Abtrennung oder die Oxyfuel-Verbrennung des Brennstoffes in einer Atmosphäre aus Sauerstoff und rezirkuliertem Abgas an. Das Ziel des Verbundprojektes ist es, diese beiden Prozesse unter Berücksichtigung aller relevanten Randbedingungen zu optimieren und anschließend einen Vergleich dieser Prozesse anhand technischer und wirtschaftlicher Gesichtspunkte durchzuführen. Die veränderten Bedingungen für die Verbrennung, welche z. B. durch eine Abgasrezirkulation hervorgerufen werden, werden sowohl experimentell an einem Versuchsstand des Verbundpartners LSM als auch analytisch durch Modellierungen untersucht. Resultierende Erkenntnisse können für die Modellbildung des Gesamtprozesses am IET berücksichtigt werden, sodass eine detaillierte Gesamtprozessanalyse vorgenommen werden kann, in welcher sämtliche Komponenten der Prozesse mithilfe numerischer Modelle in entsprechenden Simulationstools unter realitätsnahen Randbedingungen abgebildet sind. Ergänzt werden die Prozesssimulationen durch Wirtschaftlichkeitsanalysen, um neben den technischen auch die wirtschaftlichen Aspekte dieser Prozesse zu untersuchen. Es sollen dabei lediglich solche Prozesse untersucht werden, die kurz- bis mittelfristig Aussichten auf eine Realisierung im kommerziellen Maßstab haben.

Industrielle Dampferzeugung mit 100% CO2 Abscheidung und nicht-signifikanter Wirkungsgradeinbuße - Maßstabsvergrößerung der Chemical Looping

Die Technologie der Chemical-Looping Verbrennung (CLC) birgt ein einzigartiges Potenzial in Bezug auf die Möglichkeit, CO2 im Zuge des Verbrennungsvorganges in konzentrierter Form zu erhalten und dadurch aufwändige Gastrennverfahren zur CO2-Abscheidung aus Verbrennungsabgas zu vermeiden. Eine Anwendung mit großer Nähe zu Marktreife ist die Erzeugung von Prozessdampf in erdgasbefeuerten Kesseln, wo die heizwertbasierte Wirkungsgradeinbuße zur CO2-Abscheidung mit CLC nur 1 %-Punkt beträgt im Vergleich zu 15 %-Punkten mit Aminwäschern oder 8 %-Punkten mit Reinsauerstoffverbrennung (alles bei 95% Abscheiderate gerechnet). Eine Reduktion der CO2-Vermeidungskosten um 60% im Vergleich zur Aminwäschertechnologie resultiert aus der höheren Energieeffizienz der CLC-Technologie. Eine unbedingte Notwendigkeit für die Maßstabsvergrößerung von Wirbelschichtsystemen für diese Technologie ist die Verfügbarkeit eines adäquaten Sauerstoffträgermaterials. Das Projekt SUCCESS befasst sich daher mit der Maßstabsvergrößerung der Sauerstoffträgerproduktion in den 100-Tonnen-Bereich und der Technologie in den Megawattbereich. Industriell verfügbare Rohstoffe werden zur Produktion von umweltverträglichen Sauerstoffträgerpartikeln, die im vorangegangenen Projekt INNOCUOUS vorgeschlagen wurden, herangezogen. Das Projekt SUCCESS beinhaltet: i) Anwendung der Sauerstoffträgerproduktionsmethoden auf industriell notwendigem Maßstab und Sicherstellung der Leistungsfähigkeit dieser Methoden - ii) Entwicklung eines Teststandards für die mechanische Stabilität der Sauerstoffträgerpartikel - iii) Verifikation der produzierten Sauerstoffträger in vier unterschiedlichen kleineren Pilotanlagen (kleiner als 150 kW) - iv) Betrieb mit gasförmigen Brennstoffen in einer 1 MW Pilotanlage, was einen Scale-Up Faktor von 10 zum Staus Quo bedeutet - v) Detaillierte Analyse der Reaktionsmechanismen und Fluiddynamic - vi) Verwendung der Testergebnisse zur Optimierung eines 10 MW Analagendesigns sowie techno-ökonomische Analyse einer Großanlage - vii) Gesundheitsschädlichkeits-, Sicherheits- und Umweltverträglichkeitsanalyse der Sauerstoffträgerproduktion und der Sauerstoffträgerhandhabung inklusive Wiederverwendungs- und Wiederverwertungsstrategien - viii) Kostenvoranschläge für die Produktion von mehr als 100 Tonnen Sauerstoffträgermaterial. SUCCESS bündelt das CLC-KnowHow europäischer Schlüsselinstitutionen, kann so die Fortsetzung der europäischen Führungsrolle bei der Entwicklung der CLC Technologie sichern und die Technologie einen entscheidenden Schritt weiter bringen

1 2 3