API src

Found 31 results.

Related terms

Die Aufnahme von Calciumchlorid in Apfelfrüchte: Der Einfluss der Entwicklungsstadien der Früchte und die Mischung mit Fungiziden auf die Aufnahmeraten

Die Versorgung der Apfelfrüchte mit Ca2+ ist oft unzureichend, was zu physiologischen Erkrankungen, erhöhter Atmungsaktivität und zu Anfälligkeit gegen Krankheiten führen kann. Diese Probleme lassen sich nicht durch Maßnahmen im Bereich Wurzel/Boden lösen, so daß Applikation von Calciumchlorid oder Calciumnitratlösungen auf die Früchte weltweit praktiziert werden. Zahlreiche Spritzungen werden empfohlen, um den Ca-Gehalt der Früchte meßbar zu erhöhen, und das Auftreten der Stippigkeit zu reduzieren. Trotzdem ist die Wirkung oft unzureichend und deshalb werden außerhalb Europas die Früchte nach der Ernte mit CaCl2-Lösungen infiltriert. Dieses Verfahren ist außerordentlich effektiv, darf aber in Deutschland und anderen europäischen Ländern nicht angewandt werden. Damit bleibt die Applikation von Calciumsalzlösungen durch Spritzung auf die Früchte vor der Ernte die einzige Alternative. Obwohl es hunderte von Veröffentlichungen zum Thema Stippigkeit gibt, ist die Aufnahme in Früchte bisher nie systematisch untersucht worden. Um zu klären, wann und wie häufig gespritzt werden muß, sind solche Versuche aber unerläßlich. Im Wesentlichen geht es um die Beantwortung der folgenden Fragen: (1) Wie ändert sich die Geschwindigkeit der Aufnahme von CaCl2 im Verlauf der Fruchtentwicklung? Wie viele Behandlungen sind erforderlich und welche Zeitpunkte sind optimal? (2) Welchen Einfluß haben Schorffungizide auf die Calciumaufnahme? Die Literaturrecherche ergab, daß zu diesen Fragen bisher keine systematischen und quantitativen Untersuchungen durchgeführt worden sind. Eigene Vorversuche haben ergeben, daß viele Zusatzstoffe die Calciumaufnahme drastisch reduzieren.

Nanofiltration zur Grundwasseraufbereitung und Sulfatabscheidung bei der Trinkwasseraufbereitung am Beispiel von kippenbelastetem Grundwasser in einem Braunkohlentagebaurevier

Erhöhte Konzentrationen an Sulfat im Trinkwasser können negative Auswirkungen auf die Gesundheit der Konsumenten haben und führen zu einem erhöhten Risiko für Korrosionen im Leitungsnetz. Aufgrund dessen schreibt die Trinkwasserverordnung einen Grenzwert von 240 mg/l vor. Erhöhte Konzentrationen an Sulfat im Grundwasser, die eine spezielle Aufbereitungstechnik erfordern, kommen vor allem durch den Einfluss von Tagebauaktivitäten zustande. Im ausgehobenen Kippenmaterial kommt es zur Oxidation des Pyrits, was nach der Verfüllung der Gruben zu einem Anstieg der Sulfat-, Calcium- und Schwermetallkonzentration im Grundwasser führt. In betroffenen Grundwasservorkommen in Deutschland wurden Konzentrationen von bis zu 2500 mg/l Sulfat gemessen. Die Nanofiltration ist eine mögliche Aufbereitungstechnologie, die die Grundwassernutzung in derart beeinträchtigten Standorten auch nach der Verfüllung der Gruben erlaubt. Es wird erwartet, dass die Nanofiltration im Vergleich zu den anderen in Frage kommenden Technologien Ionenaustauscher, Destillation, Elektrodialyse und Umkehrosmose vor allem bei höheren Sulfatkonzentration in der Größenordnung >1000 mg/l das wirtschaftlichste Verfahren darstellt. In dem Projekt Nanofiltration zur Sulfatabscheidung bei der Trinkwasseraufbereitung wird die Aufbereitung mittels Nanofiltration experimentell im Labor- und Pilotmaßstab untersucht. Es wird dabei schwerpunktmäßig ein Standort betrachtet, der im Einflussgebiet des Braunkohletagebaureviers Inden I liegt und derzeit Sulfatkonzentrationen von 1000-1500 mg/l in einem Trinkwasserbrunnen aufweist. Neben der Untersuchung der Nanofiltration an sich wird eine Konzentrataufbereitung mittels CaSO4-Kristallisation auf ihre Effektivität geprüft.

Wasserstoffspeicher

Neue billige, leichte Wasserstoffspeicher. Zur Zeit Untersuchung von Mg- und Ca-Verbindungen. Ca-Mg-Ni-System.

Innovative Betone in Hochbauprojekten

Der Bausektor stellt eine bedeutende CO₂ Emissionsquelle dar. Global gehen jährlich CO₂ Emissionen von rund 2,5 Milliarden Tonnen auf die Herstellung der Baustoffe Zement, Stahl und Aluminium für den Gebäudebau zurück. Mehr als 1,5 Milliarden Tonnen davon werden der Herstellung von Zement und Beton zugeschrieben, ca. 8 % der globalen CO₂ Emissionen. Gleichzeitig trägt die Bauwirtschaft wesentlich zur Ressourcenbeanspruchung bei. In Deutschland wurden in 2022 rund 571 Millionen Tonnen mineralische Rohstoffe aus der Umwelt entnommen. Mineralische Bauabfälle stellen mit knapp 210 Millionen Tonnen den mit Abstand größten Abfallmassenstrom dar, der entsprechend aufbereitet als wichtige Rohstoffquelle zur Baustoffproduktion dienen kann. Um die Treibhausgasemissionen und den Ressourcenverbrauch im Bausektor zu reduzieren, setzt Berlin auf nachhaltige Baustoffe und zirkuläres Bauen. Die Berliner Senatsumweltverwaltung förderte daher in drei aufeinander folgenden Projektphasen die Untersuchung und Markteinführung einer vielversprechenden Technologie mit großem Potenzial, künftig zur Verbesserung der Klimabilanz von ressourcenschonendem Recycling-Beton (RC-Beton) beizutragen. Partnerinnen von Teilprojekten der Reihe „CORE – CO₂-reduzierter R-Beton“, waren u. a. die neustark AG , die Heim Gruppe Cemex-Heim RC-Baustoffe GmbH & Co. KG, Berger Beton SE , CEMEX Deutschland AG, das ifeu Institut Heidelberg gGmbH und das Museum für Naturkunde Berlin. Im Mittelpunkt stand dabei eine Technologie der neustark AG, die aufbereitete RC-Gesteinskörnungen aus Altbeton mit biogenem CO₂ beaufschlagt. Dabei wird CO₂ über ein Injektionssystem in Verbindung mit gebrochenem Altbeton gebracht und reagiert mit dem Calcium des Altbetons zu Kalkstein in Form von Kalzit. Das entstandene Material kann gemäß der Betonproduktnorm (DIN 1045-2) analog zur klassischen RC-Gesteinskörnung in bestimmten Betonrezepturen verwendet werden und in Anteilen natürliche Gesteinskörnungen ersetzen sowie tendenziell den Bindemittelbedarf in Betonrezepturen senken. Dies schafft einen ressourcenschonenden RC-Baustoff, der gleichzeitig als CO₂-Senke dient. In Adlershof wird ein zweiter Standort für die notwendige räumliche Erweiterung des Museums für Naturkunde (MfN) entwickelt. Nachhaltigkeitsziele des Museums für Naturkunde Das Museum für Naturkunde verfolgt bei der Entwicklung der Standorte in Mitte und Adlershof ambitionierte Nachhaltigkeitsziele. Besondere Bedeutung kommt dem Bereich Bau und Baubetrieb zu. Von der gründlichen Prüfung der tatsächlichen Bedarfe über sinnfällige funktionale Anordnungen bis hin zur Optimierung einzelner Baukörper und Konstruktionen wurden die Ziele der Nachhaltigkeit in jedem Arbeitsschritt prioritär beachtet, bei gleichzeitiger Sicherstellung der angemessenen und sicheren Unterbringung der wertvollen Sammlungen. Die aus einer kompakten Sammlungsunterbringung resultierenden hohen Verkehrslasten sind nur in einem Bauwerk aus Stahlbeton zu verwirklichen. Der Neubau in Adlershof wurde aus diesem Grund als Stahlbetonskelettbau konzipiert. Der Einsatz von RC-Betonen war in diesem Kontext naheliegend und so bot sich die Gelegenheit, in Zusammenarbeit mit der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt und weiteren Partnerinnen den Einsatz des innovativen, bereits in Bauvorhaben bewährten, CO₂-speichernden CORE-Betons weiter zu untersuchen. Wo sich der CORE-Beton bei der Errichtung des Zweitstandortes des MfN in Adlershof einsetzen ließe, wurde gemeinsam unter dem Titel „CORE 3 – CO₂-reduzierter R-Beton – Phase 3“ durch die Berliner Senatsumweltverwaltung, das ifeu Institut Heidelberg, die Heim-Gruppe, die Cemex Deutschland AG und das Museum für Naturkunde untersucht. Dabei lag das Hauptaugenmerk auf dem Einsatz von RC-Gesteinskörnung, dem Einsatz aktiv karbonatisierter RC-Gesteinskörnung und dem Einsatz von klinkereffizienten Zementen zur Herstellung CO₂-armer Betone. In der praktischen Anwendung getestet werden konnte überdies die neue Normung für den RC-Beton-Einsatz (die überarbeitete DIN 1045-2), welche wesentlich größere Mengenanteile an RC-Gesteinskörnung zulässt, als es bisher der Fall war. Ziel war ein möglichst breiter Einsatz der ‚neuen‘ Betone. Im Ergebnis ist es bei einer großen Zahl der Betonbauteile möglich, Recyclingbeton mit möglichst hohen Anteilen rezyklierter Körnung zu nutzen (alle bis zu einer Druckfestigkeitsklasse von C30/37). Lediglich die Deckenplatten der Sammlungsräume, welche für besonders hohe Verkehrslasten ausgelegt sind (15 kN/m²), werden in Spannbeton und damit in konventionellem Beton ausgeführt. Insgesamt können so Bauteile in einer Menge von ca. 12.000 m³ als RC-Beton ausgeführt werden (für die Gründung ca. 6.000 m³, die Innenbauteile ca. 3.000 m³, die Außenwände ca. 1.300 m³ und das Dach ca. 1.600 m³.) Ausgehend von den für das Bauvorhaben benötigten Betonsorten (v.a. Druckfestigkeiten und Expositionsklassen) wurden unter Berücksichtigung der Projektziele und unter Beachtung der neuen Vorgaben aus dem Regelwerk (DIN 1045-2) die maximal möglichen Anteile an mineralisierter RC-Gesteinskörnung in den einzelnen Betonrezepturen abgeleitet. Der Bericht zum Projekt kann am Seitenende heruntergeladen werden. Bezogen auf den Zweitstandort in Adlershof hätte eine Herstellung aller Betonbauteile, welche im Rahmen des CORE 3 Projektes in Recyclingbeton hergestellt werden, mit einem CEM I-Beton entsprechend dem Branchenreferenzwert des C.E.C. (CONCRETE for Engineering and Contracting) einen Ausstoß von 3.200 Tonnen CO₂ zur Folge (mit deutschem Durchschnittsbeton 2.700 Tonnen CO₂). Erfolgte die Herstellung dieser Bauteile mit der hier angesetzten Referenzrezeptur (RC-Beton mit 25 % grober RC-Gesteinskörnung, CEM II/C), wäre eine Verringerung des CO₂ Ausstoßes auf 1.800 Tonnen CO₂ möglich. Ziel des Projektes ist es zu zeigen, wie durch die individuelle, den jeweiligen Bauteilen spezifisch angepasste Betonrezeptur – und unter Beachtung der novellierten DIN 1045-2 – und die Speicherung von CO₂ der CO₂-Fußabdruck pro m³ Beton weiter verringert werden kann, soweit dies Vorgaben aus dem Regelwerk zu Mindestzementgehalten ermöglichen. Bei Errichtung des Gebäudes mit den Betonrezepturen, die im Projekt in Kombination von karbonatisierter RC-Gesteinskörnung und CO₂-armer Zemente (mit gleichzeitiger Reduktion der Bindemittelgehalte) entwickelt wurden, kann der Ausstoß auf 1.360 Tonnen CO₂ reduziert werden. Dies entspricht einer Einsparung gegenüber der Referenzrezeptur um gut 430 Tonnen CO₂, was einer relativen Einsparung von knapp 25 % entspricht (inklusive CO₂-Speicherwirkung). Der detaillierte Bericht CORE 3 kann am Ende der Seite heruntergeladen werden. CORE 1: Baustoff-Entwicklung im Labor und ökologisches Potenzial Von Dezember 2020 bis April 2021 lief die erste Projektphase. Hier wurden im Labormaßstab die Grundlagen zur Baustoffentwicklung gelegt und die Erkenntnisse ökologisch und ökonomisch bilanziert und bewertet. Dazu stellte die Heim-Gruppe gebrochenen Altbeton sowie RC-Gesteinskörnungen zur Verfügung, welche die neustark AG mit CO₂ beaufschlagte und karbonatisierte. Aus diesem Material sowie aus nicht karbonatisiertem Referenzmaterial wurden bei der Firma Berger Betonrezepturen mit erhöhten Recyclinggehalten und reduzierten Zementanteilen hergestellt. Dabei wurden sowohl aktuelle als auch zukünftige regulatorische Rahmenbedingungen für RC-Beton (insbesondere Verwendung von Brechsanden 0–2 mm) beachtet. Zudem erstellte das ifeu-Institut Heidelberg eine vereinfachte Ökobilanz des Verfahrens und eine Kostenrechnung für CO₂ aus Berliner Biogasquellen. Die Ergebnisse der ersten Projektphase bestätigten das enorme ökologische Potenzial des Verfahrens. Der detaillierte Bericht CORE 1 kann unter den unten genannten Kontaktdaten angefordert werden. In der zweiten Projektphase im Mai 2021 bis Dezember 2022 startete die praktische Anwendung im großen Maßstab: In der Aufbereitungsanlage für mineralische Bauabfälle der Firma Heim wurde RC-Gesteinskörnung aus reinem Altbeton (Typ 1) mit Hilfe einer mobilen Anlage der neustark AG mit CO₂ beaufschlagt. Die karbonatisierte RC-Gesteinskörnung erhielt erstmals eine Zertifizierung und Zulassung als Zuschlag nach DIN EN 12620 für Transportbeton. Im Herbst 2022 wurden rund 200 m³ dieses Betons in einem Bauabschnitt der Quartiersentwicklung Friedenauer Höhe in Berlin eingesetzt, die im Joint Venture mit OFB Projektentwicklung und Instone Real Estate realisiert wurde. Der Beton diente u.a. als Aufbeton für Geschossdecken sowie zur Betonierung von Wänden und des Aufzugsschachts. Parallel zeigte eine Bilanzierung des Umweltforschungsinstitut ifeu Heidelberg, dass mit den entwickelten Rezepturen eine relevante Umweltentlastung über alle betrachteten Umweltwirkungskategorien hinweg möglich ist. Je höher der Anteil insbesondere an feiner RC-Gesteinskörnung, desto höher die Bindungsrate für CO₂. Die Behandlung der RC-Gesteinskörnung zeigte, dass die Klimawirksamkeit des Betons bei gleichen Eigenschaften und Einhaltung aller einschlägigen Normen durch die Kombination von karbonatisierter RC-Gesteinskörnung und Bindemittelreduktion um bis zu 20 % verringert werden kann. Der detaillierte Bericht CORE 2 kann unter den unten genannten Kontaktdaten angefordert werden. Die im CORE-Pilotvorhaben demonstrierte Praxistauglichkeit der Technologie überzeugte alle Projektbeteiligten. Bereits mehr als 10 Anlagen der Firma neustark zur CO₂-Speicherung sind in der Schweiz in Betrieb. 2023 investierte Heim erstmals in Deutschland in eine entsprechende Anlage, sodass CO₂-speichernde RC-Gesteinskörnung seitdem auf dem Berliner Markt verfügbar ist. Die erste CO₂-Speicheranlage in Deutschland wurde am 28.09.2023 feierlich durch neustark und HEIM in Anwesenheit von über 100 Gästen und Vertreterinnen und Vertretern der Politik in Berlin Marzahn eröffnet. Bei einem flächendeckenden Einsatz der im CORE-Projekt entwickelten und in der Praxis erprobten Betonrezepturen ließen sich im Land Berlin durch die Kombination von karbonatisierter RC-Gesteinskörnung und den effizienten Einsatz CO₂-armer Zemente signifikante CO₂-Einsparungen erreichen. Bilanziell anrechenbar wären die Negativemissionen aus der karbonatisierten RC-Gesteinskörnung, wenn die aktuell zur Querfinanzierung des Baustoffs auf dem privaten CO₂-Markt emittierten Zertifikate durch den Bauherrn aufgekauft würden oder ein entsprechendes Arrangement dazu mit neustark gefunden würde. Das Berliner Ausschreibungs- und Vergabegesetz (BerlAVG) verpflichtet öffentliche Auftraggeber der unmittelbaren Berliner Landesverwaltung bei der Vergabe von Bauleistungen ab einem geschätztem Auftragswert von 50.000 Euro ökologische Kriterien zu berücksichtigen und umweltfreundlichen und energieeffizienten Produkten, Materialien und Verfahren den Vorzug zu gegeben. Wesentliches Instrument zur Umsetzung dieser Vorgabe ist die Verwaltungsvorschrift Beschaffung und Umwelt (VwVBU). Die Federführung für die Entwicklung von Vorschlägen an den Senat zur Fortentwicklung der VwVBU liegt bei der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt. Verwaltungsvorschrift Beschaffung und Umwelt – VwVBU Nachhaltiges Bauen in der öffentlichen Beschaffung Nachbericht Fachdialog zirkuläres Bauen am Beispiel ressourcenschonender Beton Leitfaden für nachhaltiges Bauen des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen Pressemitteilung der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt vom 07.10.2022 zum erstmaligen Einsatz von ressourcenschonendem und klimaverträglicherem Transportbeton in Berliner Bauvorhaben Friedenauer Höhe

Teilvorhaben: Analytik und Erforschung der Wechselwirkung von Schaumbildner und Fließmittel^Teilvorhaben: Konzipierung und Bau von Alterungsdemonstratoren^Teilvorhaben: Untersuchungen von Schaumbaustoffmischung zur Verfüllung von Hohlräumen und Rissen^Neue Dämm- und Verfüllstoffe aus Schaumgips - energieeffizient, ökologisch, unbedenklich (SULFOAM), Teilvorhaben: Alterungsuntersuchungen und Verbesserung der Bindemitteleigenschaften

Mit der Erforschung eines geschäumten Calciumsulfatbaustoffes und der dafür geeigneten Applikationstechnolgien soll der Nachfrage nach neuen Baustoffen / Materialien und deren Einsatz entgegen gekommen werden. Zwei der vielfältigen Nutzungsmöglichkeiten sollen im Rahmen dieses Projektes erschlossen werden. Dabei handelt es sich zum einen um die Herstellung einer horizontalen Dämmschicht im Fußbodenbereich, die auch Brandschutzaufgaben erfüllen kann und unter anderem zur Kaltdachsanierung geeignet ist. Zum anderen soll der neue Schaumbaustoff der Verfüllung von sanierungsbedürftigem sulfathaltigen Mauerwerk dienen und damit erstmals einen vollkommen sulfatverträglichen Baustoff darstellen. Gipsbaustoffe unterliegen durch Einflüsse aus Lagerung, Temperatur und Luftfeuchte einer sogenannten 'Alterung', das heißt es verändern sich deren Eigenschaften über die Zeit nach der Herstellung. Im Wesentlichen davon betroffen ist die Haltbarkeit und damit die Lagerdauer. Es wurde bislang noch keine definierte Alterung von Gipsbindemitteln technisch umgesetzt. Ziel des Teilprojektes ist, diese Alterung zu erforschen und umzusetzen. Hierzu dient das umfassende Arbeitspaket des Teilvorhabens Alterungsuntersuchungen. Dazu gehören das Testen unterschiedlicher Alterungsaggregate und die ausführliche Untersuchung der entstandenen gealterten Bindemittel. Für die Überwachung der Qualitätskriterien und Verfügbarkeit für die verschiedensten Anwendungen ist CASEA ebenfalls zuständig. Die künstliche Alterung und die Abstimmung der Gipsbindemittel zielt auf die radikale Reduzierung des Wasseranspruches ab. CASEA obliegt die Durchführung der wichtigsten bindemittelseitigen Maßnahmen zum Erreichen dieses Forschungszieles. Diese Maßnahmen sind 1. die künstliche Alterung und 2. die Optimierung des Kornbandes sowie 3. die Erforschung eines Bindemittels mit erhöhter innerer Wasserbindung (EIW).

Teilvorhaben: Aufbau einer Schaumgipsanlage im kleintechnischen Maßstab^Teilvorhaben: Analytik und Erforschung der Wechselwirkung von Schaumbildner und Fließmittel^Teilvorhaben: Konzipierung und Bau von Alterungsdemonstratoren^Neue Dämm- und Verfüllstoffe aus Schaumgips - energieeffizient, ökologisch, unbedenklich (SULFOAM)^Teilvorhaben: Alterungsuntersuchungen und Verbesserung der Bindemitteleigenschaften^Teilvorhaben: Untersuchungen von Schaumbaustoffmischung zur Verfüllung von Hohlräumen und Rissen, Teilvorhaben: Erforschung und labortechnische Erprobung von Schaumbaustoffmischungen

Im Verbundvorhaben werden neue Baustoffe / Materialien - geschäumte Calciumsulfatbaustoffe (Gipsbaustoffe) - und die dafür geeigneten Applikationstechnologien sowie deren Einsatzmöglichkeiten erforscht. Zwei der vielfältigen Einsatzmöglichkeiten sollen im Rahmen dieses Projektes erschlossen werden. Dabei handelt es sich zum einen um die Herstellung einer horizontalen Dämmschicht im Fußbodenbereich, die auch Brandschutzaufgaben erfüllen kann und unter anderem zur Kaltdachsanierung geeignet ist. Zum anderen soll der neue Schaumbaustoff der Verfüllung von sanierungsbedürftigem sulfathaltigen Mauerwerk dienen und damit erstmals einen vollkommen sulfatverträglichen Baustoff darstellen. Im Teilvorhaben werden Schaumbaustoffsysteme erforscht sowie deren Technologien zur Herstellung und Verarbeitung erarbeitet. Es ergeben sich folgende wissenschaftlich/technischen Arbeiten: Es werden Schäume für den Einsatz in Calciumsulfatbaustoffen auf der Basis von durch die Forschungspartner bereitgestellten Schaumbildnern, Schaumstabilisatoren und Schaumerzeugern erforscht. Die Zusammenführung von Schaum und Gipsleim zu einem Zweikomponentensystem zur Erzeugung von Schaumbaustoffmischungen wird erarbeitet. Sowohl die Eigenschaften von erhärteten geschäumten Gipsbaustoffen als auch die Zusammenhänge zwischen den Schaumbaustoffmischungen (Frischmörtel) und den erreichbaren Schaumbaustoffeigenschaften werden erforscht. Aus diesen Ergebnissen werden Schlussfolgerungen für die technologischen Prozesse und speziellen Anwendungen abgeleitet.

BMBF-Projektverbund: Sickerwasserprognose - Simulation der Sekundärmineralbildung in mineralischen Reststoffen und Bodenschichten in Kontakt mit Sickerwasser

Im Rahmen des Arbeitsschwerpunktes 'Quellstärke' des BMBF - Projektverbundes 'Sickerwasserprognose' wurden umweltgeochemische Experimente mit Müllverbrennungsaschen durchgeführt. In diesen Schlacken bilden sich mit der Zeit in Kontakt mit Wasser Sekundärminerale, die effektiv Schwermetalle einbinden können. Unbekannt war, wie schnell sich diese Minerale neu bilden, und ob man diesen Effekt nicht gleich durch Hinzufügen solcher Minerale zu den Deponaten von Anfang an erreichen kann. Verschiedene Experimente haben gezeigt, dass es zwar eine zeitliche Sukzession in der Mineralbildung gibt, dass aber die effektiven Minerale relativ schnell schon innerhalb der gesetzlich vorgeschriebenen 3-monatigen Zwischenlagerungsfrist entstehen, so dass diese Strategie nicht zur Verbesserung der Schlackequalität führt.

Ressourcensparende Entschwefelungsanlage auf der Basis eines Kreisprozesses mit verfahrenstechnischen Maschinen

Die bei der Verbrennung von Braunkohle entstehenden Abgase enthalten je nach der eingesetzten Kohle unterschiedlich hohe Schadstoffbelastungen. Zur Einhaltung der TA-Luft bzw. der in der Verordnung ueber Grossfeuerungsanlagen vorgeschriebenen Emissionsgrenzwerte ist eine Entschwefelung der Abgase notwendig. Bisher eingesetzte trockene Entschwefelungsverfahren weisen einen hohen, d. h. ueberstoechiometrischen Verbrauch an Zusatzstoffen fuer die Entschwefelung auf. Im Projekt B11 wird eine ressourcensparende Entschwefelung entwickelt. Der Vorgang der Entschwefelung basiert auf einer Chemisorption von Schwefeldioxid mit Calciumverbindungen. Der Verbrauch von Calciumverbindungen fuer die Chemisorption wird durch Vermindern der Entschwefelungstemperatur, Entschwefeln bei hoher Feuchte, Kreisprozessfuehrung und teilweiser Aufbereitung / Konditionierung des Additivs vermindert. Hierzu wird eine neuartige verfahrenstechnische Maschine entwickelt und getestet.

Spurstoff-Abscheidung in Rauchgasen mit Hilfe mechanisch aktivierter Staeube^Bindung fluechtiger Alkalien an Verbrennungsadditive bei der Verbrennung von Braunkohlen und Biomassen in Druck-Wirbelschicht-Feuerungen^Untersuchung und Modellierung der Freisetzungs- und Transportvorgaenge von Alkalien bei der Kohleverbrennung unter hohen Druecken^Heissgasreinigung (HGR)^Chemische Rauchgasreinigung bei hohen Temperaturen, Untersuchung zur Minderung von gasfoermigen Schadstoffen aus Rauchgasen bei der Heissgasfiltration

Gas- und Dampfturbinen-Kraftwerke mit Druckwirbelschicht- oder mit Druckvergasungsverfahren ermoeglichen die Verstromung von Kohle mit hohem Wirkungsgrad und niedrigen Emissionen. Eine Voraussetzung fuer den Betrieb dieser Anlagen ist die Entstaubung der Rauchgase bei hohen Temperaturen und Druecken. Abreinigungsfilter mit keramischen Elementen werden dazu eingesetzt. Eine Reduzierung gasfoermiger Schadstoffe unter den gleichen Bedingungen koennte die Rauchgaswaesche ersetzen. Ziel des Gesamtvorhabens ist es, die Integration von Heissgasfiltration und katalytischem Abbau der Schadstoffe Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in einen Verfahrensschritt zu untersuchen. Die Arbeitsschwerpunkte dieses Teilvorhabens betreffen - die katalytische Wirkung eisenhaltiger Braunkohlenaschen, - die Wirksamkeit des Calciumaluminat als Katalysator des Abbaus unverbrannter Kohlenwasserstoffe im Heissgasfilter.

Veränderungen im Apoplasten von Kulturpflanzen nach Blattbehandlungen mit Phosphat- und Calciumverbindungen hinsichtlich der a) Ausprägung der lokalen und systemischen Resistenz gegenüber Pilzkrankheiten b) Freisetzung von Signalmolekülen c) Anreiche

Die Hauptziele des vorliegenden Projektes konzentrieren sich auf Untersuchungen zu Mechanismen und Reaktionen, die nach einer Blattapplikation von Phosphatverbindungen in Kulturpflanzen ausgelöst werden und die zur Ausprägung von Resistenz gegenüber verschiedenen Pilzkrankheiten und Virosen führen. Daher stellten die durch Phosphatbehandlungen hervorgerufenen Veränderungen, die möglicherweise über Siganalmoleküle zur Ausprägung der Resistenz gegenüber Pathogenen führen, den zentralen Bereich der Untersuchungen dar. Insbesondere sollen die nach der Phosphat-Behandlung schnell initiierten Prozesse mit den Reaktionen verglichen werden, welche nach einer biotischen Resistenzinduktion mit Nekrose-auslösenden Pathogenen bzw. chemischen Induktion mit synthetischen Aktivatoren auftreten. Dazu wurden u.a. die Bildung reaktiver Sauerstoffspezies im Bereich der Primärnekrosen, das Auftreten von Zelltod in Form hypersenstiver Reaktionen, die Akkumulation von Salicylsäure sowie weitere Signalkomponenten betrachtet. In den abschließenden Arbeiten sollen nähere Untersuchungen zum Phosphat-induzierten Zelltod sowie zur Rolle der Salicylsäure bei den durch Phosphat ausgelösten Signalprozessen durchgeführt werden.

1 2 3 4