Einbau und Verteilung von Kohlenstoff unter verschiedenen Umweltsbedingungen werden am Beispiel der Weinrebe untersucht. Besonderes Augenmerk wird dabei auf die Bildung bzw. Remobilisierung von Transportkohlenhydraten nach Befall durch pilzliche Parasiten (Mehltau) oder nach Schaedigung des Photosyntheseapparates (z.B. Hagelschlag, Toxineinwirkung) gerichtet.
In dem geplanten Projekt sollen die Auswirkungen von UV-Strahlung sowohl auf Daphnien als auch auf deren Futteralgen untersucht werden. Dies soll Einblicke in die komplexen Wirkweisen von solarer UV-Strahlung auf biotische Systems, wie sie in arktischen Kleingewässern zu finden sind, erlauben. Veränderungen im Wachstum, Protein- und Kohlenhydratgehalt, sowie im Gehalt an Pigmenten, Lipiden und möglicher Schutzsubstanzen (MAAs) der UV-bestrahlten Futteralgen sollen dokumentiert und deren Einfluss auf die UV-Toleranz, die Lebensdauer und die Reproduktionsfähigkeit von Daphnien getestet werden. Schwerpunktmäßig soll die Rolle der in die Fetttröpfchen der Daphnien eingelagerten pflanzlichen Carotinoide und die Lipidreservestoffe der Daphnien untersucht werden. Darüber hinaus soll festgestellt werden, ob der Gehalt an UV-Schutzsubstanzen (Mycosporin like Amino Acids) durch UV-Bestrahlung in den Algen bzw. den Daphnien beeinflusst werden kann. Die im Labor gewonnenen Ergebnisse werden im Freiland unter natürlichen Bedingungen überprüft.
Das Wissen über die Menge, Zusammensetzung und Umsetzung der organischen Substanz in Böden der gemäßigten Breiten beschränkt sich bis auf wenige Ausnahmen auf die Oberböden (A-Horizonte und Auflagen). Hier finden sich die höchsten Konzentrationen der organischen Substanz. Jüngere Inventurarbeiten haben nun gezeigt, dass auch im Unterboden (B- und Cv-Horizonte) beträchtliche Mengen an organischer Substanz, allerdings in niedrigen Konzentrationen vorliegen. Ziel des geplanten Vorhabens ist es, (1) die Menge der organischen Substanz im Unterboden zu erfassen, (2) ihre Zusammensetzung und Herkunft zu bestimmen und (3) ihre Umsetzbarkeit zu erfassen. Daraus sollen Rückschlüsse auf die Stabilisierungsmechanismen der organischen Substanz im Unterboden gezogen werden. Nach einer Inventur der Bodenprofile an den SPP-Standorten (C-Gehalte, 14C-Alter) erfolgt die Erfassung der Zusammensetzung der organischen Substanz mittels Festkörper-13C-NMR-Spektroskopie. Die Zusammensetzung der Lipid-, Polysaccharid- und Ligninfraktion soll Hinweise auf die Herkunft der stabilisierten organischen Substanz differenziert nach oberirdischen, unterirdischen Pflanzenrückständen und mikrobiellen Resten geben. Abbauversuche unter kontrollierten Bedingungen im Labor und die Erfassung des 14C-Alters des freigesetzten CO2 sollen Aufschluß über die Umsetzbarkeit des 'jungen' und 'alten' C im Unterboden geben. Dabei werden jeweils die Profile über die gesamte Entwicklungstiefe betrachtet, um die Unterbodenhorizonte in Bezug zu den Oberböden und zu den Ergebnissen anderer AG im SPP zu setzen. Darauf aufbauend können dann in den nächsten Phasen des SPP die Eigenschaften der organischen Substanz im Unterboden und die Regulation der C-Umsetzungen im Unterboden untersucht werden.
Insektenkalamitäten können Menge und chemische Zusammensetzung von gelöster und partikulärer organischer Substanz (DOM, POM) innerhalb des Transfers zwischen Baumkronen und Boden verändern. Dies kann mikrobielle Aktivitäten in der Phyllosphäre und im Boden beeinflussen, was zu veränderten C und N Umsätzen führt. Projektziel ist, die C und N Verbindung zwischen Kronenraum und Boden in 60-jährigen Kiefernwäldern (Pinus silvestris L.) unter Insektenbefall zu untersuchen. Um die Hypothese zu testen, dass Massenvermehrung von herbivoren Insekten den C und N Umsatz in Kiefernwäldern steigert, wird (1) der Eintrag quantifiziert: DOM und POM Flüsse vom Kronenraum in den Boden, (2) Mechanismen bewertet: Effekte durch leicht- und schwerabbaubare Verbindungen in DOM und POM (Phenole, Lipide, Kohlenhydrate, Proteine, freie Aminosäuren) auf Kronen- und Bodenmikroorganismen (mikrobielle Biomasse, Enzymaktivitäten), sowie biogeochemische Prozesse (C-Mineralisierung) im Boden und (3) Konsequenzen quantifiziert: Treibhausgasemissionen (THG) und flüchtige organische Verbindungen (VOCs) vom Boden. Veränderte C und N Pfade werden über neu entwickelte Algorithmen modelliert, um langfristige Auswirkungen auf ökosystemarer Ebene abzuschätzen. Damit wird der Kurzschluss zwischen erhöhter DOM und POM Produktion im Kronenraum durch Herbivore einerseits, mit C und N Einträgen im Boden und Umsatzprozesse andererseits analysiert und modelliert.
Comprehension of belowground competition between plant species is a central part in understanding the complex interactions in intercropped agricultural systems, between crops and weeds as well as in natural ecosystems. So far, no simple and rapid method for species discrimination of roots in the soil exists. We will be developing a method for root discrimination of various species based on Fourier Transform Infrared (FTIR)-Attenuated Total Reflexion (ATR) Spectroscopy and expanding its application to the field. The absorbance patterns of FTIR-ATR spectra represent the chemical sample composition like an individual fingerprint. By means of multivariate methods, spectra will be grouped according to spectral and chemical similarity in order to achieve species discrimination. We will investigate pea and oat roots as well as maize and barnyard grass roots using various cultivars/proveniences grown in the greenhouse. Pea and oat are recommendable species for intercropping to achieve superior grain and protein yields in an environmentally sustainable manner. To evaluate the effects of intercropping on root distribution in the field, root segments will be measured directly at the soil profile wall using a mobile FTIR spectrometer. By extracting the main root compounds (lipids, proteins, carbohydrates) and recording their FTIR-ATR spectra as references, we will elucidate the chemical basis of species-specific differences.
It has been suggested that dying and decaying fine roots and root exudation represent important, if not the most important, sources of soil organic carbon (SOC) in forest soils. This may be especially true for deep-reaching roots in the subsoil, but precise data to prove this assumption are lacking. This subproject (1) examines the distribution and abundance of fine roots (greater than 2 mm diameter) and coarse roots (greater than 2 mm) in the subsoil to 240 cm depth of the three subsoil observatories in a mature European beech (Fagus sylvatica) stand, (2) quantifies the turnover of beech fine roots by direct observation (mini-rhizotron approach), (3) measures the decomposition of dead fine root mass in different soil depths, and (4) quantifies root exudation and the N-uptake potential with novel techniques under in situ conditions with the aim (i) to quantify the C flux to the SOC pool upon root death in the subsoil, (ii) to obtain a quantitative estimate of root exudation in the subsoil, and (iii) to assess the uptake activity of fine roots in the subsoil as compared to roots in the topsoil. Key methods applied are (a) the microscopic distinction between live and dead fine root mass, (b) the estimation of fine and coarse root age by the 14C bomb approach and annual ring counting in roots, (c) the direct observation of the formation and disappearance of fine roots in rhizotron tubes by sequential root imaging (CI-600 system, CID) and the calculation of root turnover, (d) the measurement of root litter decomposition using litter bags under field and controlled laboratory conditions, (e) the estimation of root N-uptake capacity by exposing intact fine roots to 15NH4+ and 15NO3- solutions, and (f) the measurement of root exudation by exposing intact fine root branches to trap solutions in cuvettes in the field and analysing for carbohydrates and amino acids by HPLC and Py-FIMS (cooperation with Prof. A. Fischer, University of Trier). The obtained data will be analysed for differences in root abundance and activity between subsoil (100-200 cm) and topsoil (0-20 cm) and will be related to soil chemical and soil biological data collected by the partner projects that may control root turnover and exudation in the subsoil. In a supplementary study, fine root biomass distribution and root turnover will also be studied at the four additional beech sites for examining root-borne C fluxes in the subsoil of beech forests under contrasting soil conditions of different geological substrates (Triassic limestone and sandstone, Quaternary sand and loess deposits).
Physiologisch dosierte Bestrahlungen mit ultraviolettem Licht haben guenstige Wirkungen auf das immunologische Abwehrsystem und auf die Kreislaufregulation. Entsprechende Befunde wurden bisher bei Bewohnern einer geriatrischen Einrichtung (Immunologie) und bei Teilnehmern einer koronaren Sportgruppe (Kreislaufmessungen) erhoben.
Origin | Count |
---|---|
Bund | 403 |
Wissenschaft | 36 |
Type | Count |
---|---|
Chemische Verbindung | 3 |
Daten und Messstellen | 36 |
Förderprogramm | 400 |
License | Count |
---|---|
geschlossen | 3 |
offen | 436 |
Language | Count |
---|---|
Deutsch | 367 |
Englisch | 87 |
Resource type | Count |
---|---|
Archiv | 8 |
Datei | 28 |
Keine | 263 |
Webseite | 140 |
Topic | Count |
---|---|
Boden | 346 |
Lebewesen und Lebensräume | 368 |
Luft | 211 |
Mensch und Umwelt | 439 |
Wasser | 208 |
Weitere | 432 |