Ziel des geplanten Verbundprojekts ist es, die Wissensbasis für die halbleitenden Funktionsschichten einer Cu(In,Ga)Se2 bzw. Cu(In,Ga)(S,Se)2 (CIGS)-Solarzelle zu erhöhen und dieses Wissen für die weitere Steigerung des Wirkungsgrads von Zellen und Modulen zu nutzen. Wirkungsgrad und Stabilität/Metastabilität werden durch die physikalischen Eigenschaften der Funktionsschichten und Grenzflächen bestimmt. Hier ist insbesondere der oberflächennahe Bereich des CIGS-Absorbers von Bedeutung. Auf diesen Bereich fokussiert das Projekt der deutschen Spitzenforschung mit der Verzahnung von Analyse, Modellierung und Optimierung. Dieses Zusammenspiel schafft die Voraussetzung für noch höhere Wirkungsgrade (geringere Kosten) und bessere Stabilität der CIGS-Technologie in Laborsolarzellen bzw. -modulen und somit auch im industriell hergestellten Modul.
Ziel des Vorhabens ist es, eine deutliche Effizienzsteigerung von CIGS-basierten Dünnschicht-Solarmodulen zu erreichen. Diese Steigerung soll durch Verbesserung der Absorberschicht, der Pufferschicht sowie der Grenzschicht zwischen diesen beiden Schichten erreicht werden. Durch den Verbund der Projektpartner stehen in optimalster Weise Kapazitäten für Analytik, Prozessierung und Simulation zur Verfügung. Im Zusammenspiel von Analytik an Einzelschichten und ihren Grenzschichten einerseits und elektro-optischer Simulation andererseits wird ein Modell erarbeitet, mit dessen Hilfe weitere Effizienzsteigerungspotentiale dargelegt werden sollen. Die so gefundenen Steigerungspotentiale werden dann in der Prozessierung umgesetzt und sollen zu einem Solarmodul mit einer Effizienz von größer 20 % (Aperturwirkungsgrad) führen. Dieser Wert liegt mehr als 2 % über dem aktuellen Weltbestwert für CIGS-basierte Dünnschicht Solarmodule.
Eine Schlüsselrolle bei der Steigerung des Wirkungsgrades von CIGS-Zellen spielt der pn-Übergang zwischen CIGS und Puffermaterial. Durch quantenmechanische Rechnungen auf Grundlage der Dichtefunktionaltheorie soll dazu beigetragen werden, dass der Einfluss der Absorber-Puffer-Grenzfläche auf den solaren Wirkungsgrad aufgeklärt und Maßnahmen zur Erhöhung des Wirkungsgrades erarbeitet werden. Durch die theoretischen Untersuchungen der Grenzfläche zwischen Absorber und Puffermaterial sollen Grenzflächenstruktur, Defekteigenschaften und elektronische Eigenschaften und Interdiffusionsmechanismen aufgeklärt werden. Hierzu wird die Beschaffenheit verschiedener Absorber/Puffer (In2S3 und Zn(O,S)) Grenzflächen untersucht. Die Rechnungen liefern gleichzeitig Information über die elektronische Struktur der Grenzfläche, d. h. Bandanpassung und Lage des Ferminiveaus, über den Einfluss von Diffusionsvorgängen und grenzflächeninduzierten Dehnungen.
Im Teilprojekt des ZSW soll durch experimentelle Realisierung von schnellen CIGS Beschichtungsprozessen im Koverdampfungsverfahren mittels einer Inline-Anlage Erkenntnisse über die Prozessführung gewonnen werden, die den Übertrag in die Produktion vorbereiten sollen. Die Erkenntnisse kommen dabei aus zwei großen Arbeitsbereichen, den Untersuchungen zum Einfluss von Alkalimetallen und zum Wachstumsverlauf schneller CIGS Prozesse.
Ziel ist die Absicherung der internationalen Wettbewerbsfähigkeit der CIGS-Technologie auf Basis der Prozess- und Anlagentechnik der Manz CIGS Technology GmbH und der Anlagentechnik der Manz AG für schlüsselfertige Produktionsanlagen. Es werden die Konzepte für Anlagentechnik der nächsten Generation mit vergrößerter Substratfläche erforscht und entwickelt. Alle für die LCoE relevanten Roadmaps (Wirkungsgrad, capex, Material, Betrieb, opex) werden erforscht und mit den internationalen Roadmaps der LCoE anderer PV-Materialien verglichen. Zur Absicherung und Risikominimierung werden einzelne Testanlagen (CIGS und Strukturierung) durch die Manz AG konzipiert und gebaut und in der Innnoline der MCT qualifiziert. Parallel wird die MCT die Prozesstechnik für CIGS-Module mit den Schwerpunkten CIGS und Strukturierung intensiv weiterentwickeln. Übergeordnetes Ziel des Vorhabens sind wettbewerbsfähige, mittel- bis langfristige Stromgestehungskosten mit CIGS-Modulen aus Fabriken von der Manz AG. In diesem Vorhaben soll nachgewiesen werden, dass die Herstellkosten für CIGS-Module mit der Manz-Technik von heute ca. 40 unter 30 $Cent je W weiter reduziert werden können.
Das Verbundvorhaben befasst sich mit der gezielten Verbesserung der Ertragsparameter bei der CIGS Absorberbildung mittels industrierelevanter Prozesse. Untersucht wird die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit und Defektdichte im Halbleiter und an den Grenzflächen und die Wechselwirkungen des Absorbers mit den weiteren Schichten. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Im Teilvorhaben der FAU erfolgt die materialwissenschaftliche Charakterisierung der Bauteile. Beteiligt sind der Lehrstuhl für Kristallographie und Strukturphysik (Prof. Hock) und das Kristallzüchtungslabor am Department Werkstoffwissenschaften 6 (Prof. Wellmann). An beiden Institutionen erfolgt eine umfassende Charakterisierung von der Oberseite der Absorber (mit und ohne Pufferschichten), von der Unterseite der vom Rückkontakt abgelösten Absorber und an der Oberseite des freigelegten Rückkontaktes. Der Querschnitt der Absorber ist in der Rasterelektronenmikrokopie zugänglich. Alle Ergebnisse der Charakterisierung werden den Prozessparametern bei der Schichtherstellung und den Ertragsparametern zugeordnet. Bei der Charakterisierung mittels Rasterelektronenmikroskopie (REM) werden der Schichtaufbau der Solarzelle, das mikrokristalline Gefüge des Absorbers und des Rückkontaktes, die Grenzfläche zwischen ihnen und die Oberflächenrauigkeit und Poren erfasst. Die im REM integrierten Detektoren für energiedispersive Röntgenfluoreszenzanalyse (EDX) und Kathodolumineszenz erlauben es, die chemische Zusammensetzung des Absorbers tiefenabhängig (Gradienten der Bandlücke) und über die Fläche (Inhomogenitäten der Bandlücke) qualitativ und quantitativ zu bestimmen und Fremdphasen zu erkennen. Räumlich und spektral aufgelöste Photolumineszenzmessungen dienen der Bestimmung der Bandlücke und ergänzen die EDX-Messungen. Neben den Eigenschaften von Absorber und Rückkontakt werden auch die Bereiche nahe den P1 Laserlinien auf Veränderungen und Beschädigungen untersucht. Die kristallografisch-strukturellen Eigenschaften der Schichten werden mittels Röntgenbeugungsmethoden untersucht. Dies umfasst die röntgenographische Phasenanalyse, die Verfeinerung der Strukturparameter der kristallinen Phasen, Messungen unter streifendem Einfall sowie Eigenspannungsmessungen und Messungen von Vorzugsorientierungen der Kristallite (Textur) an den Schichten. Durch den streifenden Einfall kann die Tiefenabhängigkeit der Elementverteilung im Absorber bestimmt werden. Eigenspannungsmessungen und Messungen der Textur sind besonders für die Eigenschaften der Rückelektrode wichtige Materialparameter.
Der Beitrag der Friedrich-Schiller-Universität Jena (FSU Jena) im Verbundvorhaben wird in der umfassenden und grundlegenden Charakterisierung von Chalkopysritbasierten (CIGS)-Laborzellen und Teilschichten liegen, die vom Industriepartner Manz und den Verbundpartnern ZSW und HZB hergestellt werden sowie von Proben, die selbst nachpräpariert werden sollen. Weiterhin soll die Dotierung von Teilschichten durch (Niederenergie-) Ionenimplantation untersucht werden. Diese Arbeiten haben das Ziel, die Eigenschaften der bei schneller Prozessführung entstehenden Fremdphasen und des umgebenden Materials zu klären und so ein tieferes Verständnis der Diffusions- und Wachstumsprozesse unter diesen Herstellungsbedingungen zu erreichen. Zum anderen sollen durch Alkalinachbehandlung mittels gezielter Niederenergie-Ionenimplantation die wesentlichen Parameter gefunden werden, die für die Nachbehandlung entscheidend sind.
Untersuchung des Einflusses einer Behandlung des Chalkopyritabsorbers (CIGS) mit Alkalimetallen bzw. deren Verbindungen auf die Solarzelleneffizienz bei schnellen Depositionsschritten. Entwicklung eines transparenten, p-Halbleiters als Voraussetzung für die Herstellung einer Tandemsolarzelle mit einer CIGS Bottom-Zelle und einer Top-Zelle aus einem Halbleiter mit großer Bandlücke, z.B. Methylammoniumbleiiodid. Unterstützung der vorgenannten Ziele und aller Projektpartner durch spezielle Analytik, z.B. am Elektronenspeicherring BESSY II.
Spezifisch für die CIGS-Technologie soll im Verbundvorhaben eine gezielte Verbesserung der CIGS Absorberbildung mittels industrierelevanter Prozesse, sowie der Wechselwirkungen des Absorbers mit den weiteren Schichten für verbesserte Ertragsparameter im Vordergrund stehen. Weiterhin soll gezielt für CIGS Module eine verbesserte Abbildung des Ertrags in Prognose und Messung erreicht werden. Insbesondere die unmittelbare Verknüpfung der Ertragsparameter mit spezifischen Bauteileigenschaften wie z.B. Bandlückengradient, Rauheit oder Defektdichte im Bauteil wird erstmals untersucht. Der Einfluss dieser Faktoren auf den Temperaturkoeffizienten, auf das Schwachlichtverhalten, auf die Winkelabhängigkeit der Einstrahlung und auf die spektrale Empfindlichkeit wird quantifiziert. Identifizierte Absorber werden zu geeigneten Testmodulen fertiggestellt, die dann in Freifeldanlagen installiert und getestet werden, auch zur Nachstellung gebäudeintegrierter Photovoltaik (BIPV). Als Ergebnis soll eine deutliche Verbesserung der Ertragsparameter der Solarmodule mit industriell umsetzbaren Prozessen gezeigt werden.
Das Ziel des Vorhabens ist die Optimierung und Weiterentwicklung von industrierelevanten in-line Selenisierungs- und Sulfurisierungprozessen und Anlagen für die schnelle (atmosphärische) Cu(In,Ga)(S,Se)2 (CIGSSe)* Deposition für hocheffiziente Solarzellen. Der Fokus liegt dabei auf der Kostenreduktion durch die Verwendung kostengünstiger, bei atmosphärischem Druck betriebenen, Anlagen, als auch der Verwendung von nicht-toxischen Materialien und einer Steigerung der Materialausbeute (reduziertem CAPEX und OPEX). Gleichzeitig wird eine Verbesserung der Wirkungsgrade der entsprechenden Solarzellen angestrebt. MBE-Komponenten entwickelt in diesem Rahmen eine Se-Quelle mit Plasma Cracker Einheit, die neuartige, effizientere Prozessführungen ermöglichen soll. *Cu: Kupfer; In: Indium; Ga: Gallium; S: Schwefel; Se: Selen Im Projekt wird eine Se-Quelle mit Plasma Cracker Einheit konzeptioniert, aufgebaut und getestet. Dazu werden verschiedene Quellenkomponenten neu entwickelt und bestehende Baugruppen weiter optimiert. Zur Untersuchung von Selenisierungsprozessen mit plasmaaktivierten Selen wird vom HZB/PVComB eine Testanlage aufgebaut. MBE-Komponenten wird das Helmholtz-Zentrum Berlin maßgeblich bei der Konzeption und Spezifikation der Anlage unterstützen insbesondere um eine Kompatibilität zur Se-Quelle zu gewährleisten.
| Origin | Count |
|---|---|
| Bund | 32 |
| Type | Count |
|---|---|
| Förderprogramm | 32 |
| License | Count |
|---|---|
| offen | 32 |
| Language | Count |
|---|---|
| Deutsch | 30 |
| Englisch | 2 |
| Resource type | Count |
|---|---|
| Keine | 14 |
| Webseite | 18 |
| Topic | Count |
|---|---|
| Boden | 10 |
| Lebewesen und Lebensräume | 6 |
| Luft | 15 |
| Mensch und Umwelt | 32 |
| Wasser | 8 |
| Weitere | 32 |