API src

Found 89 results.

Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Entwicklung von Aktivmaterialien für organische Batterien basierend auf elektropolymerisierten Polymeren mit stabilen organischen Radikalen

Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Entwicklung von Aktivmaterialien für organische Batterien basierend auf elektropolymerisierten Polymeren mit stabilen organischen Radikalen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Friedrich-Schiller-Universität Jena, Institut für Organische Chemie und Makromolekulare Chemie.Heutige Batterietechnologien basieren hauptsächlich auf Metallen wie Lithium, Blei, Kobalt oder Nickel. Deren begrenztes natürliches Vorkommen sowie Toxizität und die daraus resultierenden Entsorgungsprobleme schränken jedoch die langfristige Verwendung solcher Metalle ein. Als Alternative haben sich im Rahmen jüngster Forschungen polymere Verbindungen, also Kunststoffe, herausgestellt. In diesem Zusammenhang wurden insbesondere Polymere, die stabile organische Radikale enthalten, intensiv untersucht und zeigten vielversprechende Ladungsspeichereigenschaften, insbesondere eine überlegene Redoxkinetik. Solche Materialien leiden jedoch unter unzureichender elektrischer Leitfähigkeit, die die anwendbaren Lade- und Entladeraten begrenzt, wodurch die vorteilhaften Elektronentransfereigenschaften aufgehoben werden. Ein vielversprechender Ansatz zur Überwindung dieses Problems ist der Einbau von leitfähigen, d.h. konjugierten Polymeren. Diese Materialien bieten mehrere vorteilhafte Eigenschaften, die für eine organische Batterie ausgenutzt werden können: (i) Als Halbleiter zeigen sie elektrische Leitfähigkeit; (ii) sie können durch Elektropolymerisation hergestellt werden und bieten so eine effiziente Möglichkeit, direkt auf Elektrodenoberflächen abgeschieden zu werden; (iii) sie bieten intrinsische Ladungsspeicherfähigkeit. Allerdings zeigen Systeme, die auf der eigenen Speicherfähigkeit von konjugierten Polymeren basieren häufig driftende Lade- und Entladespannung, was deren Anwendungspotenzial erheblich einschränkt. In Kombination mit stabilen Redoxeinheiten, die die Ladungsspeicherung übernehmen, wie organische Radikale, können aber die elektrische Leitfähigkeit sowie die elektrochemische Verarbeitbarkeit zu vielversprechenden Batterieaktivmaterialien führen. Trotzdem wurden bisher nur wenige solche Beispiele in der Literatur vorgestellt. Daher soll im Rahmen dieses Projekts die Palette organischer Batteriematerialien durch die Kombination stabiler organischer Radikale mit elektropolymerisierbaren Einheiten erweitert werden, um Systeme herzustellen, die sowohl verbesserte elektrochemische Stabilität als auch elektrische Leitfähigkeit bieten.

Metalle in der Umwelt: Verteilung, Analytik und biologische Relevanz

Das Projekt "Metalle in der Umwelt: Verteilung, Analytik und biologische Relevanz" wird/wurde ausgeführt durch: Dr. Ernest Merian.Mit 57 Co-Autoren werden vorkommen, Eigenschaften, Analytik, Gewinnung, Verwendung, Entsorgung, Verteilung, Resorption, Stoffwechsel und Wirkungen auf Pflanzen, Tiere und Menschen von Metallverbindungen erfasst und allgemeine Zusammenhaenge zur Risikoanalyse und zum aufstellen von Grenzwerten erarbeitet, insbesondere wurden Umweltchemie und globale Kreislaeufe von Chrom-, Nickel-, Cobalt-, Beryllium-, Arsen-, Cadmium und Selenverbindungen studiert. Uebersichtsberichte ueber Metalltagungen siehe z.B. chemische Rundschau 35, Nr. 16, 9-13 (15. April 1982), Chemosphere 12 (4/5) N 28 - N 36 (1983), 12 (7/8), N 20 - N 27 (1983), 13 (3), N 4 - N 17 (1984) und 13 (7), N 5 - N 30 (1984). Weitere Berichte im Druck.

Chlorierte Dioxine und verwandte Verbindungen in der Umwelt

Das Projekt "Chlorierte Dioxine und verwandte Verbindungen in der Umwelt" wird/wurde ausgeführt durch: International Association of Environmental Analytical Chemistry Basle.Es werden u.a. wissenschaftliche Workshops durchgefuehrt: 22./24. Oktober 1980: Istituto Superiore di Sanita, Roma 25./29. Oktober 1981: Arlington, Virginia (USA) 12./14. Oktober 1982: Kongresszentrum, Salzburg 16./18. Oktober l984: Environment Canada, Ottawa 16./19. September 1985: Universitaet D-8580 Bayreuth untersucht werden Quellen (Unfaelle, Verbrennungsprozesse, Verunreinigungen von Agrochemikalien, usw.), Transport und Umwandlung in der Umwelt, Exposition fuer Pflanzen, Tiere und Menschen, Wirkungen, epidemiologische Studien und die jeweils notwendige hochspezifisch entwickelte Analytik.

Volatile aromatische Kohlenwasserstoffe (insbesondere ihre Umweltchemie und Kreislaeufe)

Das Projekt "Volatile aromatische Kohlenwasserstoffe (insbesondere ihre Umweltchemie und Kreislaeufe)" wird/wurde ausgeführt durch: Dr. Ernest Merian.Quellen, Transporte und Umwandlungen, Aufnahme und Wirkungen bei lebenden Organismen werden (quantitativ) fuer Benzol, Toluol, Xylole usw. erfasst als Basis fuer Risikobeurteilungen.

Gewässergüte (Chemie) 1991

Im Zuge der industriellen Entwicklung hat die Einleitung von Schadstoffen in die Gewässer immens zugenommen. Neben ihrem Vorkommen im Wasser findet eine fortwährende Anreicherung der Gewässerböden mit Schadstoffen, wie z.B. Schwermetallen und Chlorierten Kohlenwasserstoffen, statt. Ablagerung im Sediment Im Stoffkreislauf eines Gewässers bilden die Sedimente ein natürliches Puffer- und Filtersystem, das durch Strömung, Stoffeintrag/-transport und Sedimentation starken Veränderungen unterliegt. Die im Ballungsraum Berlin vielfältigen Einleitungen, häusliche und industrielle Abwässer, Regenwasser u.a. fließen über die innerstädtischen Wasserwege letztlich vorwiegend in die Unterhavel. Die seenartig erweiterte Unterhavel mit ihrer niedrigen Fließgeschwindigkeit bietet ideale Voraussetzungen dafür, daß sich die im Wasser befindlichen Schwebstoffe hier auf dem Gewässergrund absetzen (sedimentieren). Für die Beurteilung der Qualität des gesamten Ökosystems eines Gewässers kommt daher zu den bereits seit Jahren analysierten Wasserproben immer stärker auch der Analyse der Sedimente besondere Bedeutung zu. Sedimentuntersuchungen spiegeln gegenüber Wasseruntersuchungen unabhängig von aktuellen Einträgen die langfristige Gütesituation wider und stellen damit eine wesentlich bessere Vergleichsgrundlage mit anderen Fließgewässern dar. Während bei Wasseruntersuchungen eine klare Abgrenzung zwischen dem echten Schwebstoffgehalt und einem zeitweiligen Auftreten von Schwebstoffen durch aufgewirbelte Sedimentanteile nicht möglich ist, bieten sich Sedimente als nicht oder nur gering durch unerwünschte Einflüsse beeinträchtigtes Untersuchungsmedium an. Die im Gewässer befindlichen Schweb- und Sinkstoffe mineralischer und organischer Art sind in der Lage, Schadstoffpartikel anzulagern (Adsorption). Die auf dem Grund eines Gewässers abgelagerten Schweb- und Sinkstoffe, die Sedimente, bilden somit das Reservoir für viele schwerlösliche und schwerabbaubare Schad- und Spurenstoffe. (Schad-)Stoffe werden im Sediment entsprechend ihrer chemischen Persistenz und den physikalisch-chemischen und biochemischen Eigenschaften der Substrate über lange Zeit konserviert. Die Analysen der Sedimentproben aus unterschiedlichen Schichttiefen liefern eine chronologische Aufzeichnung des Eintrages in Gewässer, die u. a. auch Rückschlüsse auf Kontaminationsquellen erlauben. Nach der Sedimentation kann ein Teil der fixierten Stoffe u. a. durch Desorption, Freisetzung nach Mineralisierung von organischem Material, Aufwirbelung, Verwitterung und schließlich durch physikalische und physiologische Aktivitäten benthischer (bodenorientierter) Organismen wieder remobilisiert und in den Stoffkreislauf eines Gewässers zurückgeführt werden. Schwermetalle Schwermetalle können auf natürlichem Weg, z. B. durch Erosion und Auswaschungsprozesse, in die Gewässer gelangen; durch die oben erwähnten Einleitungen wurde ihr Gehalt in den Gewässern ständig erhöht. Sie kommen in Gewässern nur in geringem Maße in gelöster Form vor, da Schwermetallverbindungen schwer löslich sind und daher ausfallen. Mineralische Schweb- und Sinkstoffe sind in der Lage, Schwermetallionen an der Grenzflächenschicht anzulagern. Sie können ferner in Wasserorganismen gebunden sein. Über die Nahrungskette werden die Schwermetalle dann von höheren Organismen aufgenommen oder sinken entsprechend der Fließgeschwindigkeit eines Gewässers als Ablagerung (Sediment) auf den Gewässergrund ab. Einige Schwermetalle sind in geringen Mengen (Spurenelemente wie z.B. Kupfer, Zink, Mangan) lebensnotwendig, können jedoch in höheren Konzentrationen ebenso wie die ausgesprochen toxischen Schwermetalle (z. B. Blei und Cadmium) Schadwirkungen bei Mensch, Tier und Pflanze hervorrufen. Die in den Berliner Gewässersedimenten am häufigsten erhöhte Meßwerte aufweisenden Schwermetalle werden nachstehend kurz beschrieben. Kupfer ist ein Halbedelmetall und wird u.a. häufig in der Elektroindustrie verwendet. Die toxische Wirkung der Kupferverbindungen wird in der Anwendung von Algiziden und Fungiziden genutzt. Kupfer ist für alle Wasserorganismen (Bakterien, Algen, Fischnährtiere, Fische) schon in geringen Konzentrationen toxisch und kann sich daher negativ auf die Besiedlung und Selbstreinigung eines Gewässers auswirken. Als wichtigstes Spurenelement ist Kupfer für den menschlichen Stoffwechsel von Bedeutung; es führt jedoch bei erhöhten Konzentrationen zu Schädigungen der Gesundheit, die in der Regel nur vorübergehend und nicht chronisch sind. Wie Kupfer ist Zink in geringen Mengen ein lebenswichtiges Element für den Menschen. Zink wird u.a. häufig zur Oberflächenbehandlung von Rohren und Blechen sowie zu deren Produktion verwendet. Ähnlich wie Kupfer haben erhöhte Zinkkonzentrationen toxische Wirkung auf Wasserorganismen; vor allem in Weichtieren (Schnecken, Muscheln) reichert sich Zink an. Blei gehört neben Cadmium und Quecksilber zu den stark toxischen Schwermetallen, die für den menschlichen Stoffwechsel nicht essentiell sind. Bleiverbindungen werden z. B. bei der Produktion von Farben und Rostschutzmitteln sowie Akkumulatoren eingesetzt. Teilweise befinden sich in Altbauten auch noch Wasserleitungen aus Blei. Der größte Bleiemittent ist – trotz starkem Rückgang des Verbrauchs von verbleitem Benzin – immer noch der Kraftfahrzeugverkehr. Die ständige Aufnahme von Blei kann zu schweren gesundheitlichen Schädigungen des Nervensystems und zur Inaktivierung verschiedener Enzyme führen. Cadmium wird bei der Produktion von Batterien, als Stabilisator bei der PVC-Herstellung, als Pigment für Kunststoffe und Lacke sowie in der Galvanotechnik verwendet. Die toxische Wirkung von Cadmium bei bereits geringen Konzentrationen ist bekannt, wobei das Metall vor allem von Leber, Niere, Milz und Schilddrüse aufgenommen wird und zu schweren Schädigungen dieser Organe führen kann. Pestzide, PCB und deren Aufnahme durch Aale Chlorierte Kohlenwasserstoffe (CKW) haben an ihrem Kohlenstoffgerüst Chlor gebunden. Innerhalb der Gruppe der halogenierten Kohlenwasserstoffe finden sie die bei weitem meiste Herstellung, Anwendung und Verbreitung. Chlorierte Kohlenwasserstoffe sind wegen ihrer vielfältigen Verbindungen sehr zahlreich. Viele organische Chlorverbindungen, wie z.B. DDT und insbesondere die polychlorierten Biphenyle (PCB), weisen eine hohe Persistenz auf. Viele Verbindungen der Chlorierten Kohlenwasserstoffe sind im Wasser löslich, andere, wie z. B. DDT und PCB, sind dagegen fettlöslich und reichern sich im Fettgewebe von Organismen an. Verschiedene Pestizide und PCB haben – vor allem mit abnehmender Wasserlöslichkeit – die Eigenschaft, sich adsorbtiv an Schwebstoffen oder auch an Pflanzenorganismen anzulagern. In strömungsarmen Bereichen des Gewässers sinken die Schwebstoffe ab und gelangen mit den Schadstoffen auch in das Sediment. Die hier lebenden Organismen sind eine wichtige Nahrungsgrundlage für Fische. Vorwiegend die benthisch lebenden Fische vermögen daher hohe Schadstoffkonzentrationen im Fettgewebe aufzunehmen. Vor allem die fettreich werdenden Aale fressen Bodenorganismen und graben sich im Sediment ein. Diese Lebensweise führt dazu, Pestizide und PCB nicht nur über die Nahrung, sondern auch über die Haut aufzunehmen und im Körperfett zu speichern. DDT, Dichlor-Diphenyl-Trichlorethan, ist ein schwer abbaubarer Chlorierter Kohlenwasserstoff, der zu den bekanntesten Schädlingsbekämpfungsmitteln gehört und früher weltweit eingesetzt wurde. Aufgrund der fettlöslichen Eigenschaften und der äußerst hohen Persistenz wird DDT vornehmlich in den Körperfetten nahezu aller Organismen gespeichert. Die globale Anwendung von DDT hat so zu einer Belastung der gesamten Umwelt geführt. Inzwischen ist die DDT-Anwendung von fast allen Ländern gesetzlich verboten. DDT ist mutagen (erbschädigend) und steht in Verdacht, krebserregend zu sein. Lindan wird vor allem als Kontakt- und Fraßgift zur Schädlingsbekämpfung von Bodeninsekten und als Mittel zur Saatgutbehandlung verwendet. Lindan ist bei Temperaturen bis 30° C nicht flüchtig und weist eine geringe chronische Toxizität auf – ist dafür aber akut toxisch. Vergiftungserscheinungen können z. B. beim Menschen zu Übelkeit, Kopfschmerzen, Erbrechen Krampfanfällen, Atemlähmung bis hin zu Leber- und Nierenschäden führen. Zudem besitzt Lindan eine hohe Giftigkeit für Fische; es wird aber relativ schnell wieder ausgeschieden und abgebaut. PCB, polychlorierte Biphenyle, sind schwer abbaubare Chlorierte Kohlenwasserstoffe, die mit zu den stabilsten chemischen Verbindungen gehören. Wegen ihrer guten Isoliereigenschaften und der schlechten Brennbarkeit werden sie in Kondensatoren oder Hochspannungstransformatoren verwendet. Weitere Verwendung finden PCB bei Schmier-, Imprägnier- und Flammschutzmitteln. Verursacher des PCB-Eintrages in die Berliner Gewässer sind im wesentlichen der KFZ-Verkehr, die durch KFZ belastete Regenentwässerung sowie die KFZ- und Schrott-Entsorgung. In hohen Konzentrationen verursachen PCB Leber-, Milz- und Nierenschäden. Bei schweren Vergiftungen kommt es zu Organschäden und zu Krebs. Einige PCB-Vertreter unterliegen im Rahmen der gesetzlichen Regelungen seit 1989 Einschränkungen bei der Herstellung bzw. Verwendung (PCB-, PCT-, VC-Verbotsverordnung vom 18.7.89). Neben dem Nachweis erhöhter Werte im Wasser und in Sedimenten Berliner Gewässer wurden in den 80er Jahren bei Fischuntersuchungen lebensmittelrechtlich äußerst bedenkliche Konzentrationen von CKW, wie z. B. PCB und die Pestizide DDT und Lindan nachgewiesen. Dies führte im Westteil von Berlin nach Inkrafttreten der Schadstoff-Höchstmengenverordnung (SHmV vom 23. 3. 1988) zum Vermarktungsverbot für aus Berliner Gewässern gefangene Fische. Die seit dieser Zeit gefangenen Fische wurden der Sondermüllentsorgung zugeführt. Die Berufsfischerei führte im Auftrag des Fischereiamtes Berlin aufgrund eines Senatsbeschlusses Befischungsmaßnahmen durch, die durch gezielte Beeinflussung der Alterszusammensetzung eine Reduzierung der Schadstoffbelastung der Berliner Fischbestände bewirken sollten. Die intensive Befischung der Überständler hatte einen jüngeren, fett- und damit schadstoffärmeren Bestand zum Ziel; jüngere, fettärmere Fische enthalten weniger Anteile der lipophilen (fettliebenden) CKW, wie PCB, DDT, Lindan u.a. Infolge verschärfter Genehmigungsverfahren für potentielle Schadstoffeinleiter sowie insbesondere aufgrund des derzeitig verjüngten Fischbestandes konnte das Vermarktungsverbot im Mai 1992 aufgehoben werden.

Chemie - welche Stoffe belasten die Gewässer

Die Verschmutzung von Oberflächengewässern durch Schadstoffe stellt eine Gefahr für die aquatische Umwelt dar, die zu akuter und chronischer Toxizität für Wasserlebewesen, zur Akkumulation von Schadstoffen in den Ökosystemen, zur Zerstörung von Lebensräumen und zur Beeinträchtigung der biologischen Vielfalt führen sowie die menschliche Gesundheit bedrohen kann. Nach der WRRL wird der chemische Zustand eines Wasserkörpers als "gut" eingestuft, wenn alle Anforderungen des Anhangs IX und X (prioritäre Stoffe) des Artikels 16 der WRRL erfüllt werden. Die Anforderungen der WRRL wurden durch die im Dezember 2008 in Kraft getretene Richtlinie 2008/105/EG präzisiert. Umgesetzt wurden die europäischen Regelungen in der Verordnung des Bundes zum Schutz der Oberflächengewässer (OGewV). Der Leitfaden Maßnahmenplanung Oberflächengewässer Teil C Chemie enthält Datenblätter zu den 33 festgelegten prioritären Stoffen bzw. Stoffgruppen. In den Datenblättern finden sich Informationen zu den prioritären Stoffen, über ihr Vorkommen in Niedersachsen und Angaben zu möglichen Quellen sowie eine Vorschlagsliste von Maßnahmen, damit ein guter chemischer Zustand für alle Oberflächengewässer erreicht wird. Die präsentierten Datenblätter sind in erster Linie als Arbeitshilfe zu verstehen. Selbstverständlich beinhalten sie kein „Patentrezept“. Es dürfte in bestimmten Fällen unumgänglich sein, wie z.B. bei der Ermittlung der Haupteintragspfade, sie individuell zu betrachten und die weitere Vorgehensweise davon abhängig zu machen. Ein Ergänzungsband zum Leitfaden Maßnahmenplanung, Teil C Chemie (Prioritäre Stoffe) mit aktualisiertem Sachstand ist in Bearbeitung. Im Webshop des NLWKN kann der Leitfaden, soweit vorhanden, bestellt werden bzw. steht hier zum Download bereit!

Plastik - Verbundprojekt MikroPlaTaS: Mikroplastik in Talsperren und Staubereichen: Sedimentation, Verbreitung, Wirkung, Teilprojekt 5

Das Projekt "Plastik - Verbundprojekt MikroPlaTaS: Mikroplastik in Talsperren und Staubereichen: Sedimentation, Verbreitung, Wirkung, Teilprojekt 5" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Dr. Sebastian Höss.Ziel dieses Teilvorhabens ist die Erfassung der direkten toxischen Wirkung von Plastikpartikeln auf meiobenthische Organismen. Zu diesem Zweck werden die Modelorganismen Caenorhabditis elegans und Pristionchus pacificus, beide dem Stamm der Nematoden zugehörig, in Laborexperimenten Mikroplastikpartikeln ausgesetzt und hinsichtlich ihrer Reaktion auf die Partikel untersucht. Durch die Verwendung von verschiedenen Partikelgrößen und Nematodenarten mit unterschiedlich weiten Mundhöhlen, soll die Bedeutung des Aufnahmepfads für die Wirkung der Partikel untersucht werden. Weiterhin soll die Rolle des Futters (Bakterien) und von Sedimentpartikeln für die Aufnahme und Wirkung der Partikel untersucht werden, um die Situation im natürlichen Habitat (Sediment, Biofilm) zu simulieren. Die Untersuchung der direkten Toxizität der Partikel in chronischen Expositionsszenarien soll es ermöglichen, die komplexen Ergebnisse aus Freiland und Modellökosystemen besser zu interpretieren. Zur Untersuchung der Toxizität werden u.a. standardisierte Biotestverfahren verwendet (DIN ISO 10872) und möglichst reproduzierbare Versuchsbedingungen zu gewährleisten. Die Nematoden werden den unterschiedlich großen Plastikpartikeln in (1) wässrigem Medium und (2) künstlichem und natürlichen Sediment in An- und Abwesenheit von Futterakterien in verschiedenen Dichten ausgesetzt. Dafür müssen die Methoden gegebenenfalls angepasst werden. Die Wirkung wird anhand von subletalen Toxizitätsendpunkte, wie z.B. Wachstum, Reproduktion, Lebensdauer und Energiebudgetierung bewertet. Zur Erfassung der jeweiligen Endpunkte werden verschiedene chronische Expositionszeiten gewählt: 96 Stunden (gemäß DIN ISO 10872) und über einen gesamten Lebenszyklus (ca. 20 Tage). Außerdem werden aus den Versuchen exponierte Organismen für mikroskopische Analysen zur Erfassung von Partikel-Aufnahmeraten anderen Verbundpartnern (Universität Bielefeld) zur Verfügung gestellt.

Plastik - PLASTRAT: Lösungsstrategien zur Verminderung von Einträgen von urbanem Plastik in limnische Systeme, Teilprojekt 2

Das Projekt "Plastik - PLASTRAT: Lösungsstrategien zur Verminderung von Einträgen von urbanem Plastik in limnische Systeme, Teilprojekt 2" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Frankfurt am Main, Institut für Ökologie, Evolution und Diversität, Abteilung Aquatische Ökotoxikologie.Schwerpunkte der 'Wirkungs- und Gefährdungsanalyse' bilden ökotoxikologische Fragestellungen sowie die Charakterisierung und Analyse von Gefährdungspotentialen in limnischen Systemen durch Einträge von Plastik. Untersuchungsgegenstand sind unterschiedliche Plastikspezies aus den Bereichen (a) 'konventionelle', synthetische Kunststoffe, (b) Rezyklate und (c) biobasierte Kunststoffe. Diese werden in Partikelform sowohl in gealtertem als auch nicht gealtertem Zustand untersucht. Relevante de- bzw. adsorbierende und auslaugende Substanzen werden gesondert analysiert. Für diverse Kunststoffspezies wird die ökotoxikologische Datenlage über Literaturrecherche analysiert. Sofern diese Daten ausreichen, wird auf deren Basis die Ökotoxizität der freigesetzten sowie ad-/desorbierten Substanzen beurteilt. Datenlücken werden durch eigene In-vitro-Testung geschlossen. Als wesentliche Wirkprinzipien werden dabei erfasst: (a) endokrine Wirkpotentiale über rekombinante Reportergenassays mit Hefen, (b) mutagene Aktivitäten über den Ames-Fluktuationstest sowie (c) zytotoxische Wirkungen mit Leuchtbakterien. Einzelne Substanzen, bei denen sich in vitro ein besonders hohes Wirkpotential zeigt, werden zusätzlich mit Hilfe standardisierter, chronischer In-vivo-Tests analysiert. Für die In-vivo-Tests werden die NOEC oder EC10 als ökotoxikologische Wirkschwellen ermittelt, um damit die Ableitung einer PNEC bzw. der EQS für die untersuchten Substanzen zu ermöglichen. Zusätzlich werden Kunststoffpartikel mit Hilfe von In-vivo-Tests auf ihre ökotoxikologischen Effekte in standardisierten und neu entwickelten chronischen Biotests untersucht. Diese Untersuchungen werden mit tierischen Organismen durchgeführt, wobei unterschiedliche Ernährungstypen berücksichtigt werden. Als Endpunkte werden apikale Effekte auf Wachstum, Entwicklung und Fortpflanzung erfasst. Effekte eines möglichen Nahrungskettentransfers von Mikroplastikpartikeln werden in einfachen Räuber-Beute-Systemen im Labor untersucht.

COMET K2 Kompetenzzentrum für Tribologie (XTribology)

Das Projekt "COMET K2 Kompetenzzentrum für Tribologie (XTribology)" wird/wurde gefördert durch: Österreichische Forschungsförderungsgesellschaft mbH (FFG) / Universität für Bodenkultur Wien. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Department für Agrarbiotechnologie, IFA-Tulln, Institut für Umweltbiotechnologie.Das Institut für Umweltbiotechnologie bietet den Mitgliedern des COMET K2 Kompetenzzentrums die Durchführung von Biotests und die Methodenentwicklung auch für die Bestimmung der biologischen Abbaubarkeit an. Die während der letzten 14 Jahre aufgebaute Erfahrung kann für die Charakterisierung und zur Beschreibung des Umweltverhaltens von Schmierstoffen genutzt werden. Damit wird eine Risikoabschätzung dieser Produkte und der enthaltenen Substanzen möglich, welches auf Abbau- und Toxizitätsdaten beruht und damit die Anwendung, die unbeabsichtigte Freisetzung und allenfalls die Abfallbehandlung (H14 Kriterium der Europäischen Abfallliste 2000/532/EC) einschließt. Die Ökotoxizität eines Produkts wird mittels eines Sets an Biotests gemessen, in welchem repräsentative Testorganismen enthalten sind. Die dabei erfassten trophischen Ebenen sind: Bakterien (Vibrio fischeri), Algen (Pseudokirchneriella subcapitata, Chlorella sp.), Pilze (werden noch ausgewählt), Wasserflöhe (Daphnia magna), höhere Pflanzen (Lepidium sativum, Lemna minor), Regenwürmer (Eisenia sp. or Dendrobena sp.) und ein noch zu bestimmender Mutagenitätstest. Alle diese Biotests sind standardisiert und im praktischen Einsatz für Feststoffe, für eluierbare Anteile und für wasserlösliche oder wässrige Proben erprobt. Die typischen Messungen umfassen die akute und chronische Toxizität und erfasste Parameter sind im Einzelnen: Stoffwechselaktivität, Wachstum, Gewichtszunahme, Beweglichkeit, Überleben, Reproduktion und Mutagenität. Dosis-Wirkungs-Beziehungen werden für die Darstellung quantitativer Ergebnisse benötigt, um letztlich Endpunkte, wie EC- oder LC-Werte zu berechnen.

FSP-Emissionen: Gesundheitliche Bewertung von Emissionen aus Holz und Holzprodukten in Innenräumen mittels experimenteller toxikologischer Untersuchungen und humanbasierter Beobachtungen - GesundHOLZ, Teilvorhaben 4: Untersuchung von Holzprodukten sowie Bereitstellung der holztechnologischen Expertise

Das Projekt "FSP-Emissionen: Gesundheitliche Bewertung von Emissionen aus Holz und Holzprodukten in Innenräumen mittels experimenteller toxikologischer Untersuchungen und humanbasierter Beobachtungen - GesundHOLZ, Teilvorhaben 4: Untersuchung von Holzprodukten sowie Bereitstellung der holztechnologischen Expertise" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Thünen-Institut für Holzforschung.

1 2 3 4 57 8 9