API src

Found 4 results.

Impact of ocean acidification on thermal tolerance and acid-base regulation of Mytilus edulis (L.) from the North Sea

Seawater carbonate chemistry and physiological performance parameters of Carcinus maenas under respective incubation conditions

Ocean acidification causes an accumulation of CO2 in marine organisms and leads to shifts in acid-base parameters. Acid-base regulation in gill breathers involves a net increase of internal bicarbonate levels through transmembrane ion exchange with the surrounding water. Successful maintenance of body fluid pH depends on the functional capacity of ion-exchange mechanisms and associated energy budget. For a detailed understanding of the dependence of acid-base regulation on water parameters, we investigated the physiological responses of the shore crab Carcinus maenas to 4 weeks of ocean acidification [OA, P(CO2)w = 1800 µatm], at variable water bicarbonate levels, paralleled by changes in water pH. Cardiovascular performance was determined together with extra-(pHe) and intracellular pH (pHi), oxygen consumption, haemolymph CO2 parameters, and ion composition. High water P(CO2) caused haemolymph P(CO2) to rise, but pHe and pHi remained constant due to increased haemolymph and cellular [HCO3-]. This process was effective even under reduced seawater pH and bicarbonate concentrations. While extracellular cation concentrations increased throughout, anion levels remained constant or decreased. Despite similar levels of haemolymph pH and ion concentrations under OA, metabolic rates, and haemolymph flow were significantly depressed by 40 and 30%, respectively, when OA was combined with reduced seawater [HCO3-] and pH. Our findings suggest an influence of water bicarbonate levels on metabolic rates as well as on correlations between blood flow and pHe. This previously unknown phenomenon should direct attention to pathways of acid-base regulation and their potential feedback on whole-animal energy demand, in relation with changing seawater carbonate parameters.

Seawater carbonate chemistry and physiology of Baltic blue mussels (Mytilus edulis)

Increased maintenance costs at cellular, and consequently organism level, are thought to be involved in shaping the sensitivity of marine calcifiers to ocean acidification (OA). Yet, knowledge of the capacity of marine calcifiers to undergo metabolic adaptation is sparse. In Kiel Fjord, blue mussels thrive despite periodically high seawater PCO2, making this population interesting for studying metabolic adaptation under OA. Consequently, we conducted a multi-generation experiment and compared physiological responses of F1 mussels from 'tolerant' and 'sensitive' families exposed to OA for 1 year. Family classifications were based on larval survival; tolerant families settled at all PCO2 levels (700, 1120, 2400 µatm) while sensitive families did not settle at the highest PCO2 (>=99.8% mortality). We found similar filtration rates between family types at the control and intermediate PCO2 level. However, at 2400 µatm, filtration and metabolic scope of gill tissue decreased in tolerant families, indicating functional limitations at the tissue level. Routine metabolic rates (RMR) and summed tissue respiration (gill and outer mantle tissue) of tolerant families were increased at intermediate PCO2, indicating elevated cellular homeostatic costs in various tissues. By contrast, OA did not affect tissue and routine metabolism of sensitive families. However, tolerant mussels were characterised by lower RMR at control PCO2 than sensitive families, which had variable RMR. This might provide the energetic scope to cover increased energetic demands under OA, highlighting the importance of analysing intra-population variability. The mechanisms shaping such difference in RMR and scope, and thus species' adaptation potential, remain to be identified.

Elevated pCO2 from late summer coastal upwellings in the western Baltic Sea enhances vegetative growth in the brown algae Fucus serratus: a laboratory assessment

The brown algae Fucus serratus is one of the major meadow forming algae of the Western Baltic Sea nearshore ecosystem. At the end of summer, those meadows are exposed to local upwelling suddenly increasing the pCO2 and DIC up to 2500 µatm and 2250 µmol/kg resp., for period of days to weeks. This study investigates the growth response of summer's vegetative Fucus serratus to elevated pCO2 (1350 and 4080 µatm) during a 40 days laboratory incubation. After 10 days, increases of growth rates of 20 % and 47 % of the control were observed in the 1350 and 4080 µatm pCO2 treatments respectively. Beyond 20 days, the growth rates collapsed in all treatments due to nutrients shortage, as demonstrated by high C:N ratios (95:1) and low N tissue content (0.04 % of dry weight). The collapse occurs faster at higher pCO2. On day 30, growth rates were reduced by 40 % and 100 % relative to the control at 1350 and 4080 µatm respectively. These results are consistent with a fertilizing effect of elevated pCO2 on Fucus serratus presumably linked to the transition from active HCO3- to passive CO2(aq) uptake. This positive effect is limited by nutrients resources, low seawater dissolved inorganic N and P and shortage of the nutrients reserves accumulated over the previous autumn and winter.

1