API src

Found 436 results.

Nanostrukturen für Hochleistungssolarzellen

Die Energieumwandlung aus photovoltaischen Zellen ist eine seit vielen Jahrzehnten bekannte und hoch entwickelte Technologie. Für eine nachhaltige Energiegewinnung ist es allerdings notwendig Solarzellen kostengünstiger zu produzieren um mit fossilen Brennstoffen konkurrieren zu können. Die bei weitem am weitesten verbreitete und höchsten entwickelte Technologie basiert auf der Verwendung von Siliziumwafern. Diese Technologie ist aber aufgrund des hohen Preises von hochreinem Silizium sehr teuer. Anstatt der Verwendung relativ dicker Siliziumwafer können die Materialkosten mit Hilfe von Dünnschichttechnologien, oder Solarzellen der 'zweiten Generation' reduziert werden. Die Effizienz von Solarzellen kann durch Technologien der so genannten 'dritten Generation' signifikant verbessert werden. Sowohl für Solarzellen der zweiten bzw. der dritten Generation können höhere Absorption aus dem Sonnenlicht zu höheren Effizienzen führen. Plasmonische und photonische Effekte sind viel versprechende Methoden um höhere Effizienzen zu erzielen. Ziel dieses Forschungsvorhabens ist es plasmonische Strukturen mittels des physikalisch-chemischen Prozesses 'Substrat Induzierte Koagulation' (engl. Substrate Induced Coagulation - SIC) herzustellen. Bis zum heutigen Tag behandelte kein Forschungsprojekt, diese physikalisch-chemische Methode. Substrat Induziere Koagulation hat ein herausragendes Potential Strukturen einerseits billiger und andererseits unter Wahrung der ursprünglichen Form, oder durch die Möglichkeit Partikel mit anderen, kleineren zu beschichten ('core-shell'-particles), eine Vielzahl an plasmonischen Strukturen herzustellen. Die geplante Grundlagenforschung über diesen Weg sollte es möglich machen, die Wechselwirkung zwischen Licht und plasmonischen Nanostrukturen besser zu verstehen und die Effizienz von Dünnschichtsolarzellen (a-Silizium) zu erhöhen.

SUCCES - Sequential, High Uniformity, Cost Competitive Elemental Selenisation and Sulfurisation for CIGSSe2 - Sequentiell hergestellte Cu(In,Ga)(S,Se)2 Solarzellen, Teilvorhaben: Verbesserung der Effizienz und Gleichförmigkeit von sequenziell hergestellten Cu(In,Ga)(S,Se)2 Solarzellen (Kontrollierte Dotierung, Wechselwirkung von Alkalinachbehandlungen)

Perowskit auf Q.antum- Tandemzellen: PeroQ - Rohrtargets für die Übergangsschicht zwischen Bottom- und Topzelle, Teilvorhaben: Rohrtargets für die Übergangsschicht zwischen Bottom- und Topzelle

Perosol

SUCCES - Sequential, High Uniformity, Cost Competitive Elemental Selenisation and Sulfurisation for CIGSSe2 - Sequentiell hergestellte Cu(In,Ga)(S,Se)2 Solarzellen, Teilvorhaben: Wechselwirkung von Alkalibehandlungen an sequentiell hergestellten Absorbern mit trockenen Pufferschichten zur Wirkungsgradverbesserung von Cu(In,Ga)(S,Se)2 Solarmodulen

CUSTCO - Kostengünstige, skalierbare und stabile transparente leitfähige Oxide für Silizium-Solarzellen mit passivierenden Kontakten; Zelleintegration und Übertrag Industrierelevanter TCOs

SunFinder - Erforschung eines Kosinus-Sonnensensors für geostationäre Satelliten auf Basis der Dünnschicht Solarzellen Technologie, Teilvorhaben: Qualitätssicherung

TuKaN - Tunnelkontakte auf N-Typ: für die Metallisierung mit Siebdruck, Teilvorhaben: Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer und plasmaunterstützter chemischer Gasphasenabscheidung

Ziel des Teilprojekts ist die Herstellung von Solarzellen mit passivierendem Tunnelkontakt und funktionalen Schichten aus katalytischer (Cat-) und plasmaunterstützter (PE-) chemische Gasphasenabscheidung (CVD). Dabei stehen die Entwicklung von industriell geeigneten Prozessen zur kostengünstigen Abscheidung sowie die Demonstration von passivierten Kontaktsolarzellen mit hohen Wirkungsgraden im Fokus. Die vorhandenen und gewonnenen Erkenntnisse bezüglich der Herstellung von und des Verständnisses für Siliziumoxid und amorphem Silizium (a-Si:H), die für die Erzeugung passivierter Kontakte in Siliziumsolarzellen optimiert sind, sollen in die Prozess- und Anlagenentwicklung im Verbund einfließen. Des Weiteren wird eine beidseitig kontaktierte Demonstratorsolarzelle mit einer transparenten Vorderseite basierend auf einem Tunneloxid/Siliziumkarbid Schichtstapel gefertigt.

Entwicklung von nanoskaligen Trennmedien und Konstruktion einer kontinuierlichen Anlage für die Aufbereitung von PV-Modulen

Das Vorhaben der saperatec GmbH unterteilt sich in zwei Aufgabengebiete: Zum einen werden auf Basis vorhandener Erkenntnisse zu nanoskaligen Trennmedien herstellerspezifische Rezepturen mit wirtschaftlicher Trennwirkung im Labormaßstab entwickelt, mit denen Rohstoffe aus Dünnschichtmodulen zu über 95% zurückzugewonnen werden können. Zum anderen widmet sich das Projekt der Konzipierung einer automatisierten Anlagentechnik, durch die das entwickelte Trennverfahren industriell nutzbar gemacht werden soll. Die Notwendigkeit der Entwicklung ergibt sich aus der Tatsache, dass derzeitige kommerzielle Aufbereitungs- bzw. Verwertungsverfahren nicht in der Lage sind, den Modulverbund zu öffnen, um Rohstoffe wie Indium, Gallium, Germanium, Tellur, Selen, oder auch als gefährlich eingestufte Stoffe wie Cadmium wiederzugewinnen. Vielmehr finden umweltseitig als unbedenklich eingestufte PV-Module lediglich in geringwertigen Verwertungsstrukturen (Beispiel Schaumglasproduktion) Anwendung. Die strategischen Rohstoffe gehen verloren. Gefährlich eingestufter Abfall kommt in Sonderabfalldeponien zur Einbringung. Insgesamt betrachtet kann man davon ausgehen, dass die im Stand der Technik abgebildeten Recyclingaktivitäten zu einem Verlust wichtiger Rohstoffe für die Wirtschaft führen.

SunFinder - Erforschung eines Kosinus-Sonnensensors für geostationäre Satelliten auf Basis der Dünnschicht Solarzellen Technologie, Teilvorhaben: Projektmanagement, Design, Analyse, Test- und GSE-Planung

1 2 3 4 542 43 44