API src

Found 135 results.

Similar terms

s/directive 2008/56/ec/Directive 2008/50/EC/gi

Indikator: Belastung der Bevölkerung durch Feinstaub (PM10)

<p>Die wichtigsten Fakten</p><p><ul><li>Zwischen 2010 und 2023 ging der Anteil der Bevölkerung, der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠-Konzentrationen oberhalb des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Richtwerts von 15 µg/m³ im Jahresmittel ausgesetzt war, von 90,5 % auf 1,1 % zurück.</li><li>Seit 2019 lag der Bevölkerungsanteil mit einer Feinstaubbelastung oberhalb des EU Grenzwerts von 20 µg/m³ im Jahresmittel (verbindlich einzuhalten ab 2030) bei weniger als 0,5 %, im Jahr 2023 sogar bei 0 %.</li><li>Die aktuell geltenden Maßnahmen sollten weiter beibehalten und gegebenenfalls erweitert werden, um das Ziel der WHO Empfehlung im Hilblick auf die Belastung der Bevölkerung mit PM10 in 2030 erreichen zu können.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Feinstaub in der Atemluft ist gesundheitsschädlich. Die Feinstaubpartikel werden über die Atmung aufgenommen und können, je nach Größe, unterschiedlich tief in die Atemwege eindringen. Besonders kleine Partikel können über das Lungengewebe bis ins Blut gelangen. Feinstaub gilt als Auslöser für diverse Krankheiten (siehe <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/feinstaub">„Feinstaub“</a>).</p><p>Feinstaub entsteht vorwiegend durch menschliche Aktivitäten, wie beispielsweise bei Verbrennungsprozessen oder durch mechanische Prozesse (z.B. Reifen- und Bremsabrieb bei Kraftfahrzeugen). Ein Teil des Feinstaubs entsteht in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ durch chemische Reaktionen gasförmiger Luftschadstoffe (wie Stickoxide und Ammoniak) und wird daher als „sekundärer“ Feinstaub bezeichnet.</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ erfasst die durchschnittliche jährliche ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠-Belastung in Deutschland basierend auf Messstationsdaten im ländlichen und städtischen Hintergrund. Vergleichsweise höher belastete Messstellen an Straßen mit hohem ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsaufkommen#alphabar">Verkehrsaufkommen</a>⁠ oder in der Nähe von großen Industrieanlagen werden nicht mit einbezogen. Daher könnte der Indikator die Belastungssituation in Deutschland tendenziell leicht unterschätzen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Im gesamten Betrachtungszeitraum war ein nennenswerter Teil der Bevölkerung Deutschlands Feinstaub-Konzentrationen oberhalb des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Richtwerts für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠-Fraktion von ausgesetzt. Dieser beträgt 15 µg/m³ im Jahresmittel. Die Anzahl der in Deutschland betroffenen Menschen weist von 2010 zu 2023 einen deutlichen Rückgang von rund 74 Mio. auf 0,9 Mio. Personen vor. Gleichzeitig nahm der Anteil der Bevölkerung mit einer PM10-⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a>⁠ oberhalb des ab 2030 verbindlich geltenden EU-Grenzwerts (20 µg/m³ im Jahresmittel) von 34,7 Mio. in 2010 auf 0,0 Mio. Personen in 2023 ab. Seit 2019 lag der Bevölkerungsanteil bereits unter 0,5 %. Dies belegt, dass Maßnahmen zur Emissionsminderung während der letzten Jahre bereits zu einer deutlichen Reduktion der Feinstaubbelastung (PM10) in Deutschland geführt haben. Ein weiterer Rückgang der Belastung bis 2030 ist durch die Emissionsreduktionsverpflichtungen der <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32016L2284">NEC-Richtlinie</a> zu erwarten. Bei Umsetzung der Maßnahmen aus den nationalen Luftreinhalteprogrammen (in <a href="https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/nationales-luftreinhalteprogramm#die-emissionshochstmengen-der-alten-nec-richtlinie">Deutschland</a> u. a. der „Kohleausstieg“, die Verringerung der Ammoniak-Emissionen aus der Landwirtschaft und die Verkehrswende (E-Mobilität)) können die Emissionen von Feinstaub und seinen Vorläufergasen bis 2030 weiter reduziert werden. Zum Schutz der Gesundheit und zur Erreichung des Ziels, dass 2030 der von der WHO empfohlene Richtwert nicht überschritten wird, ist die Aufrechterhaltung und Intensivierung von Maßnahmen auch auf europäischer Ebene erforderlich.</p><p>Im Dezember 2024 ist die überarbeitete europäische Luftqualitätsrichtlinie in Kraft getreten. Mit dieser wird ab dem Jahr 2030 die Einhaltung strengerer Grenz- und Zielwerte europaweit gesetzlich festgeschrieben. Für PM10 wird der neue verbindlich einzuhaltende EU-Grenzwert ab 2030 von 40 auf 20&nbsp;µg/m³ im Jahresmittel gesenkt, der dem Zwischenziel 4 der WHO Empfehlungen entspricht.</p><p>Wie wird der Indikator berechnet?</p><p>Für den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ werden Daten des chemischen Transportmodells REM-CALGRID mit ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠-Messdaten der Immissionsmessnetze der Bundesländer und des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ kombiniert und auf die Fläche Deutschlands übertragen. Dabei werden nur die Messstationen berücksichtigt, die keinem direkten Feinstaubausstoß z.B. aus dem Verkehr ausgesetzt sind. Die PM10-Daten werden anschließend mit räumlichen Informationen zur Bevölkerungsverteilung kombiniert. Der methodische Ansatz ist im Fachartikel <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/artikel_5_dnk.pdf">Kienzler et al. 2024</a> beschrieben.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-feinstaub">Bedeutung der Feinstaubbelastung für die Gesundheit</a>“.</strong></p>

Feinstaub-Belastung

<p>Gegenüber den 1990er Jahren konnte die Feinstaubbelastung erheblich reduziert werden. Zukünftig ist zu erwarten, dass die Belastung eher langsam abnehmen wird. Großräumig treten heute PM10-Jahresmittelwerte unter 20 Mikrogramm pro Kubikmeter (µg/m³) auf.</p><p>Feinstaubkonzentrationen in Deutschland</p><p>Die Ländermessnetze führen seit dem Jahr 2000 flächendeckende Messungen von Feinstaub der Partikelgröße ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠ (Partikel mit einem aerodynamischen Durchmesser von 10 Mikrometer oder kleiner) und seit 2008 auch der Partikelgröße ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ durch. Besonders hoch ist die Messnetzdichte in Ballungsräumen. Die hohe Zahl und Dichte an Emittenten – beispielsweise Hausfeuerungsanlagen, Gewerbebetriebe, industrielle Anlagen und der Straßenverkehr – führen zu einer erhöhten Feinstaubkonzentration in Ballungsräumen gegenüber dem Umland. Besonders hohe Feinstaubkonzentrationen werden unter anderem wegen der starken verkehrsbedingten Emissionen wie (Diesel-)Ruß, Reifenabrieb sowie aufgewirbeltem Staub an verkehrsnahen Messstationen registriert. Während zu Beginn der 1990er Jahre im Jahresmittel großräumig Werte um 50 Mikrogramm pro Kubikmeter (µg/m³) gemessen wurden, treten heute PM10-Jahresmittelwerte zwischen 10 und 20 µg/m³ auf. Die im ländlichen Raum gelegenen Stationen des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Messnetzes verzeichnen geringere Werte.</p><p>Die Feinstaub-Immissionsbelastung wird nicht nur durch direkte Emissionen von Feinstaub verursacht, sondern zu erheblichen Teilen auch durch die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von gasförmigen Schadstoffen wie Ammoniak, Schwefeldioxid und Stickstoffoxiden. Diese reagieren in der Luft miteinander und bilden sogenannten „sekundären“ Feinstaub. Einhergehend mit einer starken Abnahme der Schwefeldioxid (SO2)-Emissionen und dem Rückgang der primären PM10-Emissionen im Zeitraum von 1995 bis 2000 sanken im gleichen Zeitraum auch die PM10-Konzentrationen deutlich (siehe Abb. „Trend der PM10-Jahresmittelwerte“). Der Trend der Konzentrationsabnahme setzt sich seitdem fort. Die zeitliche Entwicklung der PM10-Konzentrationen wird von witterungsbedingten Schwankungen zwischen den einzelnen Jahren – besonders deutlich in den Jahren 2003 und 2006 erkennbar – überlagert. Erhöhte Jahresmittelwerte wurden auch 2018 gemessen, die auf die besonders langanhaltende, zehnmonatige Trockenheit von Februar bis November zurückzuführen sind.</p><p>Überschreitungssituation</p><p>Lokal und ausschließlich an vom Verkehr beeinflussten Stationen in Ballungsräumen traten in der Vergangenheit gelegentlich Überschreitungen des für das Kalenderjahr festgelegten Grenzwerts von 40 µg/m³ auf. Seit 2012 wurden keine Überschreitungen dieses Grenzwertes mehr festgestellt.</p><p>Seit 2005 darf auch eine ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠-Konzentration von 50 Mikrogramm pro Kubikmeter (µg/m³) im Tagesmittel nur an höchstens 35 Tagen im Kalenderjahr überschritten werden. Überschreitungen des Tageswertes von 50 µg/m³ werden vor allem in Ballungsräumen an verkehrsnahen Stationen festgestellt. Die zulässige Zahl von 35 Überschreitungstagen im Kalenderjahr wurde hier in der Vergangenheit zum Teil deutlich überschritten (siehe Karten „Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 mg/m³“ und Abb. „Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes“). Vor allem das Jahr 2006 fiel durch erhebliche Überschreitungen der zulässigen Überschreitungstage auf, was auf lang anhaltende und intensive „Feinstaubepisoden“ zurückzuführen war. In den unmittelbar zurückliegenden Jahren traten nicht zuletzt durch umfangreiche Maßnahmen der mit Luftreinhaltung befassten Behörden keine Überschreitungen des Grenzwerts mehr auf. Auch 2024 wurde der Grenzwert somit an allen Messstationen in Deutschland eingehalten.</p><p>Witterungsabhängigkeit</p><p>Vor allem in trockenen Wintern, teils auch in heißen Sommern, können wiederholt hohe ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠-Konzentrationen in ganz Deutschland auftreten. Dann kann der Wert von 50 µg/m³ großflächig erheblich überschritten werden. Ein Beispiel für eine solche Belastungssituation zeigt die Karte „Tagesmittelwerte der Partikelkonzentration PM10“. Zum Belastungsschwerpunkt am 23. Januar 2017 wurden an etwa 56 % der in Deutschland vorhandenen PM10-Messstellen Tagesmittelwerte von über 50 µg/m³ gemessen. Die höchste festgestellte Konzentration betrug an diesem Tag 176 µg/m³ im Tagesmittel.</p><p>Wie stark die PM10-Belastung während solcher Witterungsverhältnisse ansteigt, hängt entscheidend davon ab, wie schnell ein Austausch mit der Umgebungsluft erfolgen kann. Winterliche Hochdruckwetterlagen mit geringen Windgeschwindigkeiten führen – wie früher auch beim Wintersmog – dazu, dass die Schadstoffe nicht abtransportiert werden können. Sie sammeln sich in den unteren Luftschichten (bis etwa 1.000 Meter) wie unter einer Glocke. Der Wechsel zu einer Wettersituation mit stärkerem Wind führt zu einer raschen Abnahme der PM10-Belastung. Auch wenn die letzten Jahre eher gering belastet waren, können auch zukünftig meteorologische Bedingungen auftreten, die zu einer deutlich erhöhten Feinstaubbelastung führen können.</p><p>Bürgerinnen und Bürger können laufend <a href="https://www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten">aktualisierte Feinstaubmessdaten und Informationen zu Überschreitungen der Feinstaubgrenzwerte</a> in Deutschland im Internet und mobil über die <a href="https://www.umweltbundesamt.de/themen/luft/luftqualitaet/app-luftqualitaet">UBA-App "Luftqualität"</a> erhalten.</p><p>Bestandteile des Feinstaubs</p><p>Die Feinstaubbestandteile ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ sind Mitte der 1990er Jahre wegen neuer Erkenntnisse über ihre Wirkungen auf die menschliche Gesundheit in den Vordergrund der Luftreinhaltepolitik getreten. Mit der <a href="https://eur-lex.europa.eu/eli/dir/2008/50/oj?locale=de">EU-Richtlinie 2008/50/EG</a> (in deutsches Recht umgesetzt mit der <a href="https://www.bmuv.de/gesetz/39-verordnung-zur-durchfuehrung-des-bundes-immissionsschutzgesetzes/">39. Bundes-Immissionsschutz-Verordnung</a> (39. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>⁠)), welche die bereits seit 2005 geltenden Grenzwerte für PM10 bestätigt und neue Luftqualitätsstandards für PM2,5 festlegt (siehe Tab. „Grenzwerte für den Schadstoff Feinstaub“), wurde dem Rechnung getragen. Als PM10 beziehungsweise PM2,5 (PM = particulate matter) wird dabei die Massenkonzentration aller Schwebstaubpartikel mit aerodynamischen Durchmessern unter 10 Mikrometer (µm) beziehungsweise 2,5 µm bezeichnet.</p><p>Herkunft</p><p>Feinstaub kann natürlichen Ursprungs sein oder durch menschliches Handeln erzeugt werden. Stammen die Staubpartikel direkt aus der Quelle - zum Beispiel durch einen Verbrennungsprozess - nennt man sie primäre Feinstäube. Als sekundäre Feinstäube bezeichnet man hingegen Partikel, die durch komplexe chemische Reaktionen in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ erst aus gasförmigen Substanzen, wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen, entstehen. Wichtige vom Menschen verursachte Feinstaubquellen sind Kraftfahrzeuge, Kraft- und Fernheizwerke, Abfallverbrennungsanlagen, Öfen und Heizungen in Wohnhäusern, der Schüttgutumschlag, die Tierhaltung sowie bestimmte Industrieprozesse. In Ballungsgebieten ist vor allem der Straßenverkehr eine bedeutende Feinstaubquelle. Dabei gelangt Feinstaub nicht nur aus Motoren in die Luft, sondern auch durch Bremsen- und Reifenabrieb sowie durch die Aufwirbelung des Staubes auf der Straßenoberfläche. Eine weitere wichtige Quelle ist die Landwirtschaft: Vor allem die Emissionen gasförmiger Vorläuferstoffe aus der Tierhaltung tragen zur Sekundärstaubbelastung bei. Als natürliche Quellen für Feinstaub sind Emissionen aus Vulkanen und Meeren, die Bodenerosion, Wald- und Buschfeuer sowie bestimmte biogene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Aerosole#alphabar">Aerosole</a>⁠, zum Beispiel Viren, Sporen von Bakterien und Pilzen zu nennen.</p><p>Während im letzten Jahrzehnt des 20. Jahrhunderts die Gesamt- und Feinstaubemissionen in Deutschland drastisch reduziert werden konnten, verlangsamte sich seither die Abnahme (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm10">„Emission von Feinstaub der Partikelgröße PM10“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-von-feinstaub-der-partikelgroesse-pm25">„Emission von Feinstaub der Partikelgröße PM2,5“</a>). Für die nächsten Jahre ist zu erwarten, dass die Staubkonzentrationen in der Luft weiterhin nur noch langsam abnehmen werden. Zur Senkung der PM-Belastung sind deshalb weitere Maßnahmen erforderlich.</p><p>Gesundheitliche Wirkungen</p><p>Feinstaub der Partikelgröße ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠ kann beim Menschen durch die Nasenhöhle in tiefere Bereiche der Bronchien eindringen. Die kleineren Partikel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ können bis in die Bronchiolen und Lungenbläschen vordringen und die ultrafeinen Partikel mit einem Durchmesser von weniger als 0,1 µm sogar bis in das Lungengewebe und den Blutkreislauf. Je nach Größe und Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen im Rachen, der Luftröhre und den Bronchien oder Schädigungen des Epithels der Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (zum Beispiel mit Auswirkungen auf die Herzfrequenzvariabilität). Eine langfristige Feinstaubbelastung kann zu Herz-Kreislauferkrankungen und Lungenkrebs führen, eine bestehende COPD (Chronisch Obstruktive Lungenerkrankung) verschlimmern, sowie das Sterblichkeitsrisiko erhöhen.</p><p>Messdaten</p><p>Mitte der 1990er Jahre wurde zunächst in einzelnen Ländermessnetzen mit der Messung von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>⁠ begonnen. Seit dem Jahr 2000 wird PM10 deutschlandweit gemessen. Für die Jahre, in denen noch nicht ausreichend Messergebnisse für die Darstellung der bundesweiten PM10-Belastung vorlagen, wurden PM10-Konzentrationen näherungsweise aus den Daten der Gesamtschwebstaubkonzentration (TSP) berechnet. Seit dem Jahr 2001 basieren alle Auswertungen ausschließlich auf gemessenen PM10-Daten. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ wird seit dem Jahr 2008 deutschlandweit an rund 200 Messstationen überwacht.</p>

Indikator: Luftqualität in Ballungsräumen

<p>Die wichtigsten Fakten</p><p><ul><li>Die Grundbelastung in deutschen Ballungsräumen überschreitet ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen aus dem Jahr 2021 für Feinstaub (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠) und Stickstoffdioxid (NO₂) deutlich.</li><li>In der Nähe von Schadstoffquellen können die Belastungen sogar wesentlich höher sein.</li><li>Bei NO₂ und PM2,5 hat sich die Situation seit dem Jahr 2000 erheblich verbessert, die WHO-Empfehlungen von 2021 werden aber noch deutlich überschritten.</li><li>Die Belastung durch Ozon und PM2,5 ist stark von der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠ abhängig. Die Werte schwanken deshalb stark.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Stickstoffdioxid (NO2), Feinstaub (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠) und Ozon (O3) sind besonders relevant für die menschliche Gesundheit. Alle drei Schadstoffe belasten die Atemorgane. Auch Ökosysteme werden durch Ozon geschädigt.</p><p>Im Jahr 2021 veröffentlichte die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠ aktualisierte Empfehlungen zur Luftqualitätsbewertung auf Basis neuester wissenschaftlicher Erkenntnisse zu den gesundheitlichen Wirkungen von Luftschadstoffen (<a href="https://apps.who.int/iris/handle/10665/345329">WHO 2021</a>), die zur Bewertung des Indikators herangezogen werden.</p><p>Prekär ist die Luftqualität vor allem in Ballungsräumen, in denen ein Drittel der deutschen Bevölkerung lebt: Industrie, Verkehr und Wohngebiete liegen hier nah beieinander. Einbezogen werden die Messstationen, die die Belastung im „städtischen Hintergrund“ messen, also die Grundbelastung der Stadt. An verkehrsreichen Standorten in Städten kann die Belastung jedoch deutlich höher sein. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ stellt den mittleren Abstand aller Messstationen im städtischen Hintergrund von den Richtwerten der WHO dar.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Seit dem Jahr 2000 ist die Belastung durch Stickstoffdioxid und Feinstaub deutlich zurückgegangen, liegt aber auch aktuell noch weit über dem Ziel, bei Stickstoffdioxid 28 % über dem Ziel und bei ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ ca. 61 %. Die Ozonbelastung ist stark schwankend. Dies liegt vor allem am Einfluss der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a>⁠: In heißen Sommern wie 2003 oder 2015 steigt die Ozon-Konzentration stark an. Deshalb kann für die letzten Jahre keine Aussage über den Trend der Entwicklung gemacht werden.</p><p>Die EU schrieb ihre Luftqualitäts-Ziele 2008 in der <a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32008L0050">Luftqualitäts-Richtlinie</a> fest (EU-RL 2008/50/EG), im Oktober 2022 legte die Kommission einen Vorschlag zur Revision dieser Richtlinie vor (<a href="https://environment.ec.europa.eu/publications/revision-eu-ambient-air-quality-legislation_en">KOM 2022</a>), der die neuen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen 2021 berücksichtigen soll. Doch auch einige der weniger ambitionierten Ziele der derzeitigen EU-Richtlinie verfehlt Deutschland noch <a href="https://www.umweltbundesamt.de/publikationen/luftqualitaet-2024">(UBA 2025)</a>. Bis die Luft in den Ballungsräumen wirklich ausreichend „sauber“ ist, ist also noch ein weiter Weg zu gehen.</p><p>Wie wird der Indikator berechnet?</p><p>Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ basiert auf Messdaten der Luftqualitätsmessnetze der Bundesländer. Betrachtet werden alle Messstellen eines Ballungsraums zur Messung der Belastung im städtischen oder vorstädtischen Hintergrund. Für diese Messstellen wird die Über- oder Unterschreitung der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>⁠-Empfehlungen 2021 für die drei Schadstoffe NO₂, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>⁠ und O₃ berechnet. Für jeden Ballungsraum wird der mittlere Abstand der Werte aller Messstationen zur WHO-Empfehlung 2021 errechnet. Die mittleren Abstände werden dann über alle Ballungsräume gemittelt und mit dem Wert der WHO-Empfehlung 2021 normiert.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/luft/luftbelastung-in-ballungsraeumen">„Luftbelastung in Ballungsräumen“</a>.</strong></p>

Ressortforschungsplan 2024, Methodenprüfung und Toolimplementierung zur Ableitung der Repräsentativität von Luftmessstationen unter Verwendung von Modellergebnissen

Im Zuge der Revision der Luftqualitätsrichtlinie wird die Modellierung der Luftqualität einen größeren Stellenwert einnehmen. In diesem Zusammenhang wird auch auf die Ableitung der Repräsentativität von Messstationen fokussiert. Aufgrund verschiedener Modellsysteme, Modellauflösungen und -konfigurationen sowie Ansätze zur Ableitung der Repräsentativität von Messstationen bedarf es weiterer Untersuchungen. Ziel des Vorhabens ist es daher, bestehende Ansätze (beispielsweise FAIRMODE Tier 1-4) auf Praxistauglichkeit zu untersuchen. Hierbei sollen unter Einbeziehung von ausgewählten Ländermessnetzen verschieden Ansätze, Modellsysteme und Konfigurationen getestet werden. Im Ergebnis sind die Ergebnisse zu bewerten sowie Best-Practice Beispiele aufzuzeigen. Zudem soll eine Tool zur Ableitung der Repräsentativität von Messstationen entwickelt werden, dass verschiedene räumliche Ebenen (NUTS 1 Level, Beurteilungsgebiete etc.) berücksichtigen soll.

Beschreibung des Messnetzes

Die Luftverunreinigung Berlins wird seit 1975 durch das Berliner Luftgüte-Messnetz (BLUME) kontinuierlich gemessen. Dabei lag der Schwerpunkt der Messungen ursprünglich bei Schwefeldioxid. Im Laufe der Zeit wurde die Messung weiterer Schadstoffe aufgenommen. Derzeit besteht das Messnetz aus 17 ortsfesten Messstationen für Luftschadstoffe, einer Sondermessstelle und einer meteorologischen Station. Von den einzelnen Stationen werden die 5-Minuten-Werte jedes Schadstoffes zur Messzentrale in der Brückenstraße (Mitte) übertragen und daraus die Stunden- und Tageswerte als Basis für die weitere Auswertung berechnet. Die ermittelten Daten dienen der Berechnung von Kennwerten der Luftverschmutzung zur Beurteilung der Luftqualität anhand von Grenz- und Zielwerten der 39. BImSchV , der Ermittlung der Schadstoffbelastung für Genehmigungsverfahren (nach Technischer Anleitung zur Reinhaltung der Luft – TA Luft), der Ursachenermittlung der Luftverunreinigung, der Verfolgung der Wirksamkeit von Maßnahmen zur Luftreinhaltung und der Informationen der Öffentlichkeit. Derzeit betreibt das Berliner Luftgütemessnetz 17 Messcontainer zur Überwachung der Luftqualität gemäß der 39. BImSchV , von denen sieben verkehrsnah und jeweils fünf in innerstädtischen Wohngebieten und am Stadtrand platziert sind. An allen Messcontainern wurden Stickstoffmonoxid und Stickstoffdioxid (NOx als Summe von NO und NO 2 mit dem Chemolumineszenzverfahren), an zwölf Stationen Partikel-PM 10 (Partikel mit einem Teilchendurchmesser bis zu 10 Mikrometer durch Streulichtmessung), an acht Stationen Ozon (O 3 durch Absorption von UV-Strahlung), an zwei Stationen Kohlenmonoxid (CO durch Absorption von Infrarotstrahlung) und an zwei Stationen Benzol (C6H6 durch Gaschromatographie) gemessen. Neben dem automatischen Messverfahren zur PM 10 -Messung werden in sechs Messcontainern auch Probenahmegeräte zur Bestimmung von PM 10 und/oder PM 2,5 mit dem gravimetrischen Referenzverfahren gemäß EU-Luftqualitätsrichtlinie 2008/50/EG betrieben. In einem Teil dieser Partikelproben werden Benzo(a)pyren, Blei, Arsen, Cadmium und Nickel analysiert und mit den jeweiligen Grenz- bzw. Zielwerten verglichen. Außerdem erfolgen Kohlenstoff- und Ionenanalysen. Das Containermessnetz wird in Berlin bereits seit Mitte der 1990er Jahre durch kleine, an Straßenlaternen befestigte aktive Probenahmegeräte (RUBIS) und Passivsammler ergänzt. Sie sind insbesondere für die Erfassung der Belastung aus dem Straßenverkehr eine wichtige Ergänzung der Datengrundlage, weil Emissionen aus dem Verkehrssektor für die meisten Schadstoffe einen erheblichen Teil zur Immissionsbelastung beitragen, in engeren Straßen der Innenstadt aber schon aus Platzgründen keine großen Messcontainer betrieben werden können. Mit “Ruß- und Benzol-Immissionssammlern” (RUBIS) und Passivsammlern für Stickstoffdioxid und Stickoxide derzeit an 23 zusätzlichen Stellen im Berliner Stadtgebiet die Belastung mit EC und OC und an 42 zusätzlichen Stellen die Belastung mit Stickoxiden in zweiwöchiger Auflösung ermittelt. Insbesondere für Stickstoffdioxid sind die an diesen Stellen ermittelten Jahresmittelwerte eine wichtige zusätzliche Beurteilungsgrundlage. Die Messungen werden durch Modellrechnungen für alle Straßenabschnitte ergänzt, um die Belastung im gesamten Berliner Stadtgebiet einzuschätzen. 13 der 36 Stickstoffdioxid-Passivsammler wurden Ende 2018 in Betrieb genommen und lieferten 2019 erstmals gültige Jahresmittelwerte. Werktäglich werden gegen 12 Uhr die Messwerte des Vortags an einige Zeitungen, Radio- und Fernsehstationen zur Veröffentlichung übermittelt. Parallel dazu werden die Daten auch ins Internet eingespeist und können im Luftdatenportal abgerufen werden. Monats- und Jahresberichte im pdf-Format bieten wir hier zum Download an. Diese können in Papierform auch unter blume@senmvku.berlin.de angefordert werden.

Erste Auswertungen zur Luftqualität 2025

Die Luftqualität in Nordrhein-Westfalen befindet sich im Vergleich zum Vorjahr auf gleichbleibendem Niveau. Das zeigen erste vorläufige Auswertungen der Messdaten aus dem Jahr 2025 des Landesamtes für Natur, Umwelt und Klima. Stickstoffdioxid (NO 2 ) Die Stickstoffdioxid-Konzentration in der Luft wurde im Jahr 2025 an 56 Messstellen in Nordrhein-Westfalen mit einem automatischen Verfahren kontinuierlich gemessen. An diesen Stationen lag im Jahr 2025 die NO 2 Belastung landesweit auf einem vergleichbaren Niveau wie im Vorjahr. Der europäische Grenzwert für die mittlere Jahreskonzentration von 40 Mikrogramm pro Kubikmeter wurde an den Stationen sicher eingehalten. Für weitere Standorte, an denen die Belastung mit einem Passivsammler-Verfahren und Laboranalytik bestimmt wird, liegt die Auswertung der Daten erst etwa im März vor. Die bisher vorliegenden Daten weisen aber schon jetzt darauf hin, dass mit hoher Wahrscheinlichkeit auch an diesen Messorten der aktuell gültige Grenzwert eingehalten wurde. Feinstaub (PM 10 ) Die PM 10 -Messungen erfassen die Gesamtmasse aller Feinstaubpartikel bis zu einem maximalen Durchmesser von 10 Mikrometern. Auch diese Messungen ergeben eine ähnliche Belastung wie im Vorjahr. An allen Probenahmestellen in Nordrhein-Westfalen wurde der Jahresmittelgrenzwert von 40 Mikrogramm pro Kubikmeter für PM 10 , wie bereits in den Jahren zuvor, deutlich eingehalten. Neben dem Jahresmittelgrenzwert wurde an allen PM 10 Probenahmestellen auch der Tagesmittelgrenzwert eingehalten. Danach dürfen an einer Probenahmestelle maximal 35 Tage pro Kalenderjahr mit einer mittleren Belastung von mehr als 50 Mikrogramm pro Kubikmeter Luft für PM 10 auftreten. Neue Grenzwerte ab 2030 Am 10. Dezember 2024 ist die europäische Luftqualitätsrichtlinie (EU) 2024/2881 in Kraft getretenen. Mit dieser Richtlinie sind ab dem Jahr 2030 unter anderem Grenz- und Zielwerte mit einem erhöhten Schutzniveau für die menschliche Gesundheit und die Umwelt europaweit einzuhalten. Die neuen Grenzwerte basieren auf Empfehlungen der Weltgesundheitsorganisation (WHO), die sich auf neuere Erkenntnisse zu den gesundheitlichen Wirkungen von Luftschadstoffen beziehen. Der Jahresmittelwert für Stickstoffdioxid darf ab 2030 einen Wert von 20 Mikrogramm pro Kubikmeter Luft nicht mehr überschreiten. Auch für Feinstaub mit einem maximalen Partikeldurchmesser von zehn Mikrometern wird der Grenzwert für das Jahresmittel von 40 auf 20 Mikrogramm pro Kubikmeter herabgesetzt. Der Tagesmittel-Grenzwert für Feinstaub PM10 wird ab 2030 45 statt bisher 50 Mikrogramm pro Kubikmeter betragen. Dieser Wert darf dann nur noch an maximal 18 statt bisher 35 Tagen überschritten werden. Die vorläufige Auswertung der kontinuierlichen Messungen der Feinstaub- und Stickstoffdioxidbelastung ist in der angehängten Tabelle dargestellt. Zur Tabelle : https://lanuv/luft/Tabelle_Konti_2025.pdf Die vollständige Bewertung der Luftqualität für das Jahr 2025 wird nach Abschluss der Laboranalyse der Passivsammlermessungen im Laufe des Frühjahres 2026 vorgenommen. Jahresberichte und Daten sind im Fachinformationssystem Luft.NRW veröffentlicht. Nach Abschluss der Auswertungen werden dort die Ergebnisse für 2025 ergänzt: https://luftqualitaet.nrw.de/index.php Informationen zur neuen Luftqualitätsrichtlinie beim Umweltbundesamt: https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/luftreinhaltung-in-der-eu/die-neue-luftqualitaetsrichtlinie zurück

Langfristige Entwicklung der Luftqualität

Die Luftqualität in Berlin hat sich in den letzten Jahrzehnten stark verbessert. Seit 2020 werden die aktuell geltenden Grenz- und Zielwerte für Luftschadstoffe stadtweit eingehalten – ein Erfolg für Umwelt und Gesundheit. Grundlage für den Rückgang der Luftbelastung sind die schrittweisen Verschärfungen von Grenzwerten zum Schadstoffausstoß von Kraftwerken, Industrie, Kleinfeuerungsanlagen und Fahrzeugen, die auf europäischer und nationaler Ebene festgelegt wurden und werden. Zusätzlich beigetragen haben Maßnahmen aus den Berliner Luftreinhalteplänen . Die Luftqualität in Berlin wird seit Mitte der 1970er Jahren kontinuierlich überwacht, um die Immissionsbelastung durch Luftschadstoffe zu dokumentieren. Seit 2002 erfolgen die Messungen gemäß den Vorschriften der Europäischen Luftqualitätsrichtlinien. Zur besseren Einordnung der Messwerte werden drei Belastungsregime unterschieden: Verkehr : Messstationen an Hauptverkehrsstraßen mit hoher Belastung Innerstädtischer Hintergrund : Messstationen in innerstädtischen Wohngebieten mit geringem direktem Verkehrseinfluss Stadtrand : Messstationen am Stadtrand zeigen die quellferne Belastungssituation und erlauben zudem auch die Beurteilung über den Eintrag von Luftschadstoffen von außerhalb des Stadtgebietes Die folgenden Abbildungen zeigen den langjährigen Verlauf der mittleren Luftbelastung einzelner Schadstoffe in diesen Belastungsregimen. Für Stickstoffdioxid NO₂, Feinstaub PM₁₀, PM₂ꓹ₅ und Ozon O₃ werden die langfristigen Entwicklungen basierend auf einem Differenzenmodell ermittelt, wie im Jahresbericht 2019 (PDF, 4,2 MB) beschrieben. Im Kern werden dabei die Differenzen der Jahresmittelwerte von einem zum darauffolgenden Jahr verwendet. Werte für die einzelnen Stationen nach Schadstoffen und sind verfügbar unter: Darstellung von Luftmessdaten | Berliner Luftgütemessnetz Ab 2030 müssen deutlich strengere EU-Grenzwerte gemäß der EU-Richtlinie 2024/2881 eingehalten werden, unter anderem für die Jahresmittelwerte von Stickstoffdioxid (20 statt 40 µg/m³), Partikel PM₁₀ (20 statt 40 µg/m³) und Partikel PM₂,₅ (10 statt 25 µg/m³). Diese künftigen Grenzwerte sind in den Abbildungen zusätzlich zu den derzeit geltenden Grenzwerten eingezeichnet. Stickstoffdioxid Schwebstaub / Partikel PM 10 Partikel PM 2,5 Ozon Polyzyklische aromatische Kohlenwasserstoffe (PAK) Schwefeldioxid Benzol Kohlenmonoxid Entwicklung der NO₂-Belastung in Berlin (1990 bis 2024) Die NO₂-Konzentrationen in Berlin sind in den vergangenen Jahrzehnten insgesamt deutlich zurückgegangen, wenn auch mit zeitweiligen Stagnationen. Seit 2020 werden die Grenzwerte an allen Stationen eingehalten. Die nebenstehende Grafik zeigt die langjährige Entwicklung der NO₂-Belastung der automatischen Messstellen sowie der acht beurteilungsrelevanten Passivsammlerstandorte (Passivsammler = PS). Die sehr kleinen Passivsammler befinden sich überwiegend an Straßen mit einer engen Randbebauung, in denen die Abgase der Fahrzeuge schlechter verdünnt werden. Daher liegt der Mittelwert über diese Passivsammler höher als der Mittelwert über die kontinuierlich messenden Verkehrsstationen. Hohe Stickstoffdioxidkonzentrationen werden überwiegend vom Straßenverkehr verursacht. Die höchsten NO₂-Werte treten an Hauptverkehrsstraßen auf. Dort waren die NO₂-Jahresmittelwerte bis 2019 etwa doppelt so hoch wie im städtischen Hintergrund und liegen heute im Mittel immer noch etwa ein Drittel höher als im städtischen Hintergrund. Überschreitungen der seit 2020 geltenden Grenzwerte traten daher nur an Hauptverkehrsstraßen auf. Der langfristige Verlauf zeigt: In den 1990er- bis 2010er-Jahren kam es zu einem Rückgang der NO₂-Belastung infolge technischer Maßnahmen, wie dem Einsatz von Katalysatoren in Otto-Pkw und die Ausrüstung von Kraftwerken mit Entstickungsanlagen. Auch die Einführung der Berliner Umweltzone – in zwei Stufen 2008 und 2010 – trug zur Verbesserung der Luftqualität bei. Insbesondere reduzierte sie die Zahl der Otto-Fahrzeuge ohne Katalysator im innerstädtischen Verkehr. Zwischen 2000 und 2015 blieben die NO₂-Jahresmittelwerte auf einem annähernd gleichbleibenden Niveau. Dabei kamen zwei Gründe zusammen. Zum einen stieg der Anteil an Diesel-Pkw mit hohen Stickoxidausstoß zulasten der Otto-Pkw mit Katalysator. Zum anderen wurde bei Diesel-Pkw der reale Stickoxidausstoß nicht im gesetzlich vorgeschriebenen Maße vermindert (Dieselabgasskandal von 2015). Erst mit der Einführung neuer Abgasvorschriften (Euro 6d-TEMP und Euro 6d) mit Abgasprüfungen im realen Straßenverkehr sowie Software-Updates und Nachrüstung von Diesel-Fahrzeugen konnte in den folgenden Jahren eine deutliche Reduzierung des Schadstoffausstoßes von Diesel-Pkw erreicht werden. Auffällig sind die erhöhten Jahresmittelwerte von 2006. Vor allem für die Straßenmessstellen zeigen diese hohen Jahresmittelwerte eindrucksvoll den Einfluss von meteorologischen Bedingungen auf die Konzentration von Luftschadstoffen. Denn das Jahr 2006 war geprägt durch eine hohe Anzahl windschwacher Hochdruckwetterlagen und ungünstigen meteorologischen Ausbreitungsbedingungen. Seit 2016 sind die NO₂-Werte insbesondere durch die verschärften Abgasvorschriften Kraftfahrzeuge in allen Belastungsbereichen wieder deutlich gesunken. Konkrete Messdaten belegen: An Hauptverkehrsstraßen gingen die NO₂-Werte zwischen 2016 und 2024 um etwa 55 % zurück. Der stärkste Rückgang wurde zwischen 2019 und 2020 beobachtet – begünstigt auch durch Maßnahmen der Berliner Luftreinhalteplanung wie die Nachrüstung und Modernisierung von Dieselbussen und Einführung von Elektro-Bussen durch die BVG , Tempo 30 auf hoch belasteten Hauptverkehrsstraßen , Ausweitung der Parkraumbewirtschaftung , sowie die Förderung des Umweltverbunds aus öffentlichem Nahverkehr , Rad- und Fußverkehr . Zusätzlich führten Lock-Down-Phasen während der Corona-Pandemie 2020-2022 zu Rückgängen des Verkehrs und verstärkten die Abnahme der NO₂-Belastung. Daraus resultiert weiterhin ein höherer Anteil von Home-Office mit einem dämpfenden Effekt auf den Berufsverkehr. 2023 und 2024 lagen die NO₂-Mittelwerte im Berliner Luftgüte-Messnetz (BLUME) je nach Standort zwischen 8 und 20 µg/m³, während Passivsammler 2024 im Mittel 28 µg/m³ zeigten Der zukünftige EU-Grenzwert von 20 µg/m³, der ab 2030 einzuhalten ist, wird noch an einigen hoch belasteten Straßen überschritten. Es besteht also weiterhin Handlungsbedarf, vor allem in der Verkehrsplanung, beim Umstieg auf emissionsarme Fahrzeuge und der Förderung nachhaltiger Mobilität. Auch die Umsetzung der Berliner Wärmestrategie trägt durch den schrittweisen Ersatz fossiler Heizsysteme zur Reduktion von Feinstaub- und Stickoxid-Emissionen bei. Weitere Informationen zur Definition und Messung von NO₂ bietet das Umweltbundesamt . Entwicklung der TSP- und PM₁₀-Belastung in Berlin (1987 bis 2024) Ende der 1990er Jahre wurde mit der Messung von Partikeln PM₁₀, also von einatembaren Teilchen kleiner als 10 Mikrometer (µm), begonnen. Sie ersetzte die Gesamtstaubmessung (TSP – total suspended particles), bei der auch grobe Teilchen > 10 µm erfasst wurden. Deshalb sind beide Reihen nicht direkt miteinander vergleichbar. Der sehr starke Rückgang der Gesamtstaubbelastung zwischen 1987 und 1997 beruht im Wesentlichen auf dem Umstieg von Kohleeinzelraumfeuerungen („Kachelöfen“) auf Gasheizungen und Fernwärme sowie der Modernisierung oder Stilllegung von Kraftwerken in den Gebieten der ehemaligen DDR. Die langfristige Entwicklung zeigt einen deutlichen Rückgang der PM₁₀-Konzentrationen in Berlin: Seit 2000 sanken die Werte an verkehrsnahen Standorten um ca. 40 %, in Wohngebieten und am Stadtrand um rund 30 %. Seit 2004 wird der gesetzliche Jahresmittelgrenzwert von 40 µg/m³ an allen Messstationen eingehalten. Die Zahl der Tage mit Überschreitungen des Tagesmittelgrenzwerts von 50 µg/m³ ist ebenfalls deutlich rückläufig. Die letzte Überschreitung der zulässigen Anzahl von 35 Überschreitungstagen wurde 2015 registriert (Station MC174 an der Frankfurter Allee mit 36 Tagen). Die Feinstaubbelastung ist stark witterungsabhängig: Kalte Winter mit hohem Heizbedarf führen häufig zu höheren Werten. Hochdruckwetterlagen mit geringen Windgeschwindigkeiten und Inversionswetter verhindern den Abtransport von Schadstoffen. Ferntransporte (z. B. großräumige Verfrachtung von Schadstoffen aus Kraftwerken und Holzfeuerungen, der Landwirtschaft oder Saharastaub ) können zusätzlich zur Belastung beitragen. Beispiele: Günstige Wetterjahre wie 2007, 2012, 2017, 2019, 2020, 2022, 2023 führten zu vergleichsweise niedrigen PM₁₀-Konzentrationen, ungünstige Wetterbedingungen in den Jahren 2003, 2006, 2010, 2011, 2014 und 2018 zu höheren Belastungen. Der langjährig rückläufige Trend der PM₁₀-Belastung ist auf gezielte Maßnahmen zurückzuführen: Rauchgasreinigung bei Kraftwerken und Abfallverbrennung, Ersatz von Kohleheizungen, Partikelfilter für Diesel-Fahrzeuge und Baumaschinen , sowie Förderung des Umweltverbunds aus öffentlichem Nahverkehr und Rad- und Fußverkehr und Tempo 30 auf hoch belasteten Hauptverkehrsstraßen. Der verkehrsbedingte Anteil an der PM₁₀-Belastung wurde seit den späten 1990er Jahren um rund 70 % reduziert. Ab 2030 gelten in der EU strengere Grenzwerte : Der Jahresmittelwert wird auf 20 µg/m³ gesenkt, ein Tagesmittelgrenzwert von 45 µg/m³ darf an höchstens 18 Tagen pro Jahr überschritten werden (bisher: 35 Tage mit 50 µg/m³). An vielen Berliner Messstationen werden diese Werte bereits eingehalten, an verkehrsnahen Standorten jedoch teils noch überschritten. Es besteht somit weiterer Handlungsbedarf – insbesondere im Straßenverkehr und bei häuslichen Emissionen. Weitere Informationen zur Definition und Messung von PM₁₀ bietet das Umweltbundesamt . Entwicklung der PM₂,₅-Belastung in Berlin (2004 bis 2024) Als Partikel PM₂ꓹ₅ werden sehr kleine Partikel bezeichnet, deren aerodynamischer Durchmesser kleiner als 2,5 µm ist. Sie können nachhaltig die Lunge schädigen, da sie tief in die Atemwege eindringen und länger dort verweilen. Außerdem können hohe PM₂ꓹ₅-Belastungen zu Herz- und Kreislauferkrankungen führen. Der enthaltene Ruß gilt als krebserregend. In den vergangenen zwei Jahrzehnten ist die PM₂,₅-Belastung in Berlin deutlich gesunken: An verkehrsnahen Messstationen um rund 45 %, im innerstädtischen Hintergrund um etwa 40 %. Der gesetzliche Jahresmittelgrenzwert von 25 µg/m³ wird seit seiner Einführung im Jahr 2015 an allen Berliner Messstellen zuverlässig eingehalten. Auch der gleitende Drei-Jahres-Mittelwert im städtischen Hintergrund liegt seit Jahren unter dem Zielwert von 20 µg/m³. Die PM₂,₅-Konzentrationen unterliegen jedoch starken witterungsbedingten Schwankungen. Kalte Winter mit erhöhtem Heizbedarf führen zu mehr Emissionen. Inversionslagen verhindern den Luftaustausch, sodass sich Schadstoffe anreichern. Ferntransporte – etwa Abgase aus Kraftwerken, Industrie oder Holzfeuerungen, Saharastaub oder landwirtschaftliche Quellen – tragen zusätzlich zur Belastung bei. Auch die sekundäre Partikelbildung – z. B. aus Stickoxiden, Schwefeldioxid oder Ammoniak – ist wetterabhängig. Günstige Wetterjahre mit viel Wind und Regen wie 2012, 2017, 2019, 2020, 2022 und 2023 führten zu niedrigeren PM₂,₅-Werten. In ungünstigen Jahren wie 2006, 2010, 2014, 2018 und 2024 wurden dagegen teils erhöhte Belastungen gemessen. Der Rückgang der PM₂,₅-Belastung ist auf eine Vielzahl von Luftreinhaltemaßnahmen zurückzuführen: strengere EU-Abgasnormen, der verstärkte Einsatz von Partikelfiltern für Dieselfahrzeuge, u.a. durch die Einführung der Berliner Umweltzone ab 2008, die Modernisierung veralteter Heizungsanlagen, der Umstieg auf emissionsärmere Energieträger und die Reduktion gasförmiger Vorläuferstoffe. Seit 2023 ergänzt die Informationskampagne „Richtig Heizen mit Holz“ das Berliner Maßnahmenpaket. Ab 2030 gelten in der EU deutlich strengere Grenzwerte : Der Jahresmittelgrenzwert für PM₂,₅ wird von 25 µg/m³ auf 10 µg/m³ gesenkt. Dieser Wert wird derzeit an Verkehrsmessstationen und teilweise auch im städtischen Hintergrund nicht eingehalten. Zudem wird ein neuer Tagesmittelgrenzwert von 25 µg/m³ eingeführt, der an höchstens 18 Tagen pro Jahr überschritten werden darf. Zusätzlich gilt ab 2030 eine Minderungsverpflichtung für die PM₂ꓹ₅-Belastung im städtischen Hintergrund. Zur Einhaltung der künftigen Grenzwerte sind zusätzliche Maßnahmen nötig – vor allem in den Bereichen Verkehrsplanung, emissionsarme Wärmeversorgung und umweltfreundliche Stadtentwicklung. Da circa 60 bis 70 % der in Berlin gemessenen Partikeln aus Quellen außerhalb Berlins stammen, muss die Partikelbelastung europaweit gesenkt werden. Weitere Informationen zur Definition und Messung von PM₂ꓹ₅ bietet das Umweltbundesamt . Dieser dreiatomige Sauerstoff ist ein natürlicher Bestandteil der Luft und wird nur selten direkt emittiert. Die Bildung von bodennahem Ozon geschieht über chemische Reaktionen aus Vorläuferstoffe unter dem Einfluss von UV-Strahlung. Der wichtigste Vorläuferstoff ist Stickstoffdioxid (NO₂). Aber auch flüchtige organische Verbindungen (VOC, volatile organic compounds) sind für die Ozonbildung von Bedeutung, da diese zur Umwandlung von Stickstoffmonoxid (NO) zum Ozonvorläuferstoff NO₂ beitragen. Abgebaut wird Ozon wiederum durch NO. Die höchsten Ozonkonzentrationen treten im Sommer während sonnigen Schönwetterperioden auf. Denn dann ist die UV-Einstrahlung hoch und zudem werden von der Vegetation bei hohen Temperaturen mehr VOCs freigesetzt. Entwicklung der O₃-Belastung in Berlin (1988 bis 2024) Die langfristige Entwicklung der Jahresmittelwerte zeigt zwei gegensätzliche Trends je nach Standorttyp: Im innerstädtischen Hintergrund ist seit Ende der 1980er Jahre ein nahezu kontinuierlicher Anstieg der mittleren Ozonkonzentrationen zu beobachten. Eine Regressionsanalyse ergibt eine Zunahme von etwa 0,4 µg/m³ pro Jahr. Am Stadtrand hingegen ist nach einem Rückgang Anfang der 1990er Jahre eine geringere Zunahme um rund 0,1 µg/m³ pro Jahr festzustellen. Die mittlere Ozonbelastung ist damit inzwischen im städtischen Hintergrund genauso hoch wie am Stadtrand. Für die verkehrsnahe Station MC174 liegen seit 2020 eigene Ozon-Messdaten vor, die deutlich niedrigere Werte zeigen – beispielsweise 42 µg/m³ im Jahr 2019, 43 µg/m³ 2020 und 47 µg/m³ 2024. Ursache dafür ist der direkte NO-Ausstoß aus dem Straßenverkehr, der Ozon effektiv reduziert. Die Jahresmittelwerte unterliegen darüber hinaus starken witterungsbedingten Schwankungen. Unterschiede von bis zu 7 µg/m³ zwischen zwei aufeinanderfolgenden Jahren sind nicht ungewöhnlich. Besonders hohe Ozonwerte wurden in den Jahren 2018 und 2019 gemessen – bedingt durch heiße, sonnige Sommer mit stabilen Hochdruckwetterlagen. Die Jahre 2023 und 2024 wiesen mit jeweils 52 bis 53 µg/m³ im innerstädtischen Hintergrund die höchsten je gemessenen Mittelwerte auf und bestätigen damit den langfristigen Trend. Der beobachtete Anstieg der mittleren Ozonwerte lässt sich vor allem auf die Reduktion der NO-Konzentrationen zurückführen, insbesondere im Sommer. Weniger NO bedeutet eine geringere Abbaurate von Ozon, wodurch sich O₃ länger in der Atmosphäre hält. Weitere Einflussfaktoren sind die Trockenheit und der Hitzestress der Vegetation – wie in den Jahren 2018 und 2019. Dies führt zu geringeren VOC-Emissionen, wodurch insbesondere die Bildung extremer Ozonspitzen reduziert wird. Zudem haben Emissionseinsparungen bei den Ozonvorläufern NOₓ und VOCs aus Verkehr, Industrie und privatem Gebrauch (etwa Farben, Lacke, Lösungsmittel) die Häufigkeit hoher Kurzzeitbelastungen deutlich reduziert. Kurzzeitige O₃-Belastungsspitzen sind gesundheitlich besonders relevant, da erhöhte Ozon-Konzentrationen zu Reizerscheinungen der Augen und Schleimhäute sowie Lungenschäden führen können. Deshalb wurden zum Zweck des Gesundheitsschutzes die Informationsschwelle von 180 µg/m³ und die Alarmschwelle von 240 µg/m³, jeweils als Mittelwert über eine Stunde, festgelegt. Diese Belastungsspitzen sind jedoch im Gegensatz zur mittleren O₃-Belastung seit Jahren rückläufig, selbst in Jahren mit eigentlich günstigen Bedingungen für Ozonbildung. So zeigen 2018, 2019, 2023 und 2024: Trotz hoher Temperaturen kam es nicht zu extremen Ozonspitzen, vermutlich infolge niedriger NO₂-Werte und verringerter VOC-Emissionen durch Trockenheit. Weitere Informationen zur Definition und Messung von Ozon bietet das Umweltbundesamt . Ein Zukunftsausblick: Für Ozon gibt es bislang keine EU-Grenzwerte für Jahresmittelwerte, aber die Einhaltung der Informations- und Alarmschwellen bleibt essenziell. Mit dem Klimawandel – mehr Hitzetage und längere Trockenperioden – wird die Bedeutung der Ozonbelastung weiter zunehmen. Eine wirksame Reduktion von Vorläuferstoffen bleibt daher entscheidend, um Gesundheit und Umwelt langfristig zu schützen. Entwicklung der Benz[a]pyren-Belastung in Berlin (1993 bis 2022) Polyzyklische aromatische Kohlenwasserstoffe (PAK) gelten als krebserregende organische Verbindungen. Diese Stoffe entstehen überwiegend bei schlechter (unvollständiger) Verbrennung von Öl, Kohle oder Holz. Wichtige Quellen sind in Berlin Holzverbrennung in Kleinfeuerungsanlagen und Dieselmotoren ohne Filter. Als wichtigste Messgröße wird dabei Benzo(a)pyren (B(a)P) verwendet. Bereits Mitte der 1990er Jahre gab es erste orientierende Messungen von Benzo(a)pyren an der Messstelle Nansenstraße in Neukölln. Seit 2006 werden regelmäßige Messungen an vier verschiedenen Standorten (Hauptverkehrsstraßen, Wohngebiete und städtischer Hintergrund) durchgeführt. Damit wird die Einhaltung des gesetzlich festgelegten Zielwerts für Benzo(a)pyren von 1 ng/m³ als Jahresmittelwert überwacht. Ein Blick auf die langfristige Entwicklung zeigt: Im städtischen Wohngebiet ist die Belastung seit den 1990er Jahren um den Faktor fünf gesunken. In den Jahren 2006 und 2010 wurde an der Messstation im innerstädtischen Wohngebiet Neukölln sowie an der Hauptverkehrsstraße Schildhornstraße der Grenzwert von 1 ng/m³ erreicht. Dieser Anstieg wird unter anderem auf besonders kalte Winter und den damit einhergehenden erhöhten Verbrauch von Kohle und Holz in privaten Feuerungsanlagen zurückgeführt – wie Kohleheizungen, Holzöfen und Kaminen. Seit 2012 liegen die gemessenen PAK-Konzentrationen an allen Messstellen nahe beieinander und deutlich unter dem Grenzwert. Zwischen 2012 und 2021 bewegten sich die Jahresmittelwerte an allen Stationen zwischen etwa 0,3 und 0,5 ng/m³, 2022 sank die Belastung auf den niedrigsten bisher gemessenen Wert von 0,1 ng/m³. Entwicklung der SO₂-Belastung in Berlin (1988 bis 2019) Die Luftbelastung durch die meisten direkt emittierten Schadstoffe ist in den letzten 20 Jahren stark gesunken. Beim Schwefeldioxid, das hauptsächlich aus Kraftwerken, Industrie und Kohleöfen stammte, ist dieser Rückgang am deutlichsten. Die Entwicklung der SO₂-Belastung in Berlin ist in der Abbildung für den Zeitraum von 1976 bis 2019 dargestellt. Die blau gestrichelte Linie beruht auf Daten, welche bis 2000 im Jahresbericht des BLUME (Senatsverwaltung für Stadtentwicklung, 2001) als SO₂-Gebietsmittel veröffentlicht wurden, jedoch nicht in digitaler Form vorliegen. Seit 1989 liegen die als Punkte dargestellten Jahresmittelwerte der einzelnen Messstationen in digitaler Form in der Datenbank des BLUME vor. Auf Grundlage dieser Daten wurde unter Anwendung der Differenzenmethode der mittlere Verlauf der SO₂-Entwicklung aller Messstationen (rote Linie) und der Messstationen des städtischen Raums (innerstädtischer Hintergrund und Verkehr, gelbe Linie) berechnet. Die Emissionen sind durch die Sanierung oder Stilllegung von Industrieanlagen und die Installation von Rauchgasentschwefelungsanlagen in Kraftwerken Ende der 80er Jahre in West-Berlin und nach 1990 auch in den neuen Bundesländern und osteuropäischen Nachbarländern stark gesunken. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme und der Einsatz von schwefelarmem Kraftstoff haben zur Verbesserung der Luftqualität beigetragen. Zwischen 2004 und 2014 lag die Schwefeldioxidimmission im gesamten Stadtgebiet, sowohl in der Innenstadt als auch in den Außenbezirken auf Jahresmittelwerte zwischen 1-4 µg/m³ . Seit 2015 liegt sie im Bereich von 1-2 µg/m³. Damit ist die Konzentration von Schwefeldioxid im Vergleich zu 1989 um fast 99 % zurückgegangen. Das heutige Konzentrationsniveau liegt mit Tagesmittelwerten von maximal 6 µg/m³ an drei Tagen im Jahr 2019 weit unterhalb der unteren Beurteilungsschwelle der 39. BImSchV von 50 µg/m³ an höchstens drei Tagen im Jahr. Die Messungen wurden daher im Jahr 2020 eingestellt. Entwicklung der Benzol-Belastung in Berlin (1993/94 bis 2022) Benzol gehört zu den krebserregenden Stoffen und kann Leukämie (Blutkrebs) verursachen. Benzol wird vorwiegend von Pkw mit Ottomotor emittiert. Durch den Einsatz des geregelten Katalysators, verbesserter Motortechnik, besserer Kraftstoffe und den Einsatz von Gaspendelsystemen an Tankstellen sowie in Tanklagern konnte die Emission dieses Schadstoffes in den letzten Jahren deutlich verringert werden. Entsprechend hat auch die Immissionsbelastung durch Benzol in den vergangenen Jahren in Berlin stark abgenommen. Die Benzolwerte im Jahr 2010 waren an den Hauptverkehrsstraßen nur ein Fünftel und im innerstädtischen Hintergrund nur noch ein Drittel so hoch wie 1993. Zwischen 2010 und 2022 hat sich die Belastung an der Verkehrsmessstation noch mal halbiert. Der seit 2010 einzuhaltende Grenzwert von 5 µg/m³ wird bereits seit dem Jahr 2000 unterschritten. In den letzten drei Jahren lag auch die straßennahe Benzolkonzentration im Jahresmittel unter 2 µg/m³. Ab 2030 gilt für Benzol ein Grenzwert von 3,4 µg/m³. Auch dieser Wert wird bereits deutlich unterschritten. Kohlenmonoxid (CO) entsteht bei der unvollständigen Verbrennung von kohlenstoffhaltigen Brennstoffen, insbesondere in Kleinfeuerungsanlagen (Holz, Kohle), schlecht eingestellten Ölheizungen und Verbrennungsmotoren. In den letzten drei Jahrzehnten nahm die Kohlenmonoxid-Belastung an den Hauptverkehrsstraßen und im innerstädtischen Hintergrund um jeweils ca. 80 % ab. Der starke Rückgang der Kohlenmonoxid-Belastung beruht zum einen auf der Einführung des geregelten Katalysators und effizienterer Motoren in Kraftfahrzeugen. Zum anderen hat auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme dazu beigetragen. Dadurch wurde auch der seit 2005 einzuhaltende Kohlenmonoxid-Grenzwert zum Schutz der menschlichen Gesundheit von 10 mg/m³ als höchster 8-Stunden-Mittelwert eines Tages an allen Messstationen nie überschritten.

WD 8 - 075/19 Einzelfragen zu Fahrverboten und Verbotszonen

Kurzinformation des wissenschaftlichen Dienstes des Deutschen Bundestages. 2 Seiten. Auszug der ersten drei Seiten: Wissenschaftliche Dienste Kurzinformation Einzelfragen zu Fahrverboten und Verbotszonen Die Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21.05.2008 über Luft- 1 qualität und saubere Luft für Europa (Luftqualitätsrichtlinie) als sekundäres Unionsrecht erfuhr ihre nationale Umsetzung im Wege des 8. Gesetzes zur Änderung des Bundes-Immissionsschutz- 2 3 gesetzes (BImSchG) sowie der 39. Verordnung zur Durchführung des BImSchG. Das Bundesverwaltungsgericht (BVerwG) führte in einer aktuellen Entscheidung hinsichtlich Verkehrsverboten für Dieselfahrzeuge aus: „Erweist sich ein auf bestimmte Straßen oder Straßenabschnitte beschränktes Verkehrsverbot für (bestimmte) Dieselfahrzeuge als die einzig geeignete Maßnahme zur schnellstmöglichen Einhal- tung der Stickstoffdioxid-Grenzwerte, verlangt Art. 23 Abs. 1 Unterabsatz 2 der Richtlinie 4 2008/50/EG, diese Maßnahme zu ergreifen.“ Die gegen diese Entscheidung erhobene Verfassungsbeschwerde hat das Bundesverfassungsge- richt mit Beschluss vom 07.01.2019 - 1 BvR 2851/18 - einstimmig nicht zur Entscheidung ange- nommen. Von einer Begründung wurde nach § 93d Abs. 1 Satz 3 Bundesverfassungsgerichtsge- setz (BVerfGG) abgesehen. 1 Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21.05.2008 über Luftqualität und sau- bere Luft für Europa (ABl. EU Nr. L 152 vom 11.6.2008, S. 1-44). https://eur-lex.europa.eu/legal-con- tent/DE/NIM/?uri=CELEX:32008L0050. Letzter Zugriff: 28.05.2019. 2 Achtes Gesetz zur Änderung des Bundes-Immissionsschutzgesetzes vom 31.07.2010 (BGBl. I S. 1059). https://www.bgbl.de/xa- ver/bgbl/start.xav#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl110s1059.pdf%27%5D__1559048143046. Letzter Zugriff: 28.05.2019. 3 Neununddreißigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Luftqualitätsstandards und Emissionshöchstmengen - 39. BImSchV) vom 02.08.2010 (BGBl. I S. 1065), zuletzt geändert durch Verordnung vom 18.07.2018 (BGBl. I S. 1222). https://www.gesetze-im-internet.de/bim- schv_39/BJNR106510010.html. Letzter Zugriff: 28.05.2019. 4 BVerwG, Urteil vom 27.02.2018, 7 C 26/16, zitiert nach juris: Leitsatz. WD 8 - 3000 - 075/19 (29.05.2019) © 2019 Deutscher Bundestag Die Wissenschaftlichen Dienste des Deutschen Bundestages unterstützen die Mitglieder des Deutschen Bundestages bei ihrer mandatsbezogenen Tätigkeit. Ihre Arbeiten geben nicht die Auffassung des Deutschen Bundestages, eines sei- ner Organe oder der Bundestagsverwaltung wieder. Vielmehr liegen sie in der fachlichen Verantwortung der Verfasse- rinnen und Verfasser sowie der Fachbereichsleitung. Arbeiten der Wissenschaftlichen Dienste geben nur den zum Zeit- punkt der Erstellung des Textes aktuellen Stand wieder und stellen eine individuelle Auftragsarbeit für einen Abge- ordneten des Bundestages dar. Die Arbeiten können der Geheimschutzordnung des Bundestages unterliegende, ge- schützte oder andere nicht zur Veröffentlichung geeignete Informationen enthalten. Eine beabsichtigte Weitergabe oder Veröffentlichung ist vorab dem jeweiligen Fachbereich anzuzeigen und nur mit Angabe der Quelle zulässig. Der Fach- bereich berät über die dabei zu berücksichtigenden Fragen.[.. next page ..]Wissenschaftliche Dienste Kurzinformation Seite 2 Einzelfragen zu Fahrverboten und Verbotszonen Zur Frage, ob und inwieweit eine Richtervorlage nach Art. 100 Abs. 1 Grundgesetz (GG) statthaft ist, die auf die verfassungsgerichtliche Kontrolle einer EU-Richtlinie bzw. eines formellen Geset- zes, das in Umsetzung einer EU-Richtlinie ergangen ist, abzielt, wird auf die folgenden Ausfüh- rungen im Grundgesetz-Kommentar Maunz/Dürig verwiesen: „Anders als im Fall der Ultra-vires- und der Identitätskontrolle hat das Bundesverfassungsgericht sich selbst für die Grundrechtskontrolle ein seit 1986 geltendes Moratorium auferlegt. Das Ge- richt verzichtet auf die Ausübung seiner Gerichtsbarkeit, soweit die Überprüfung von sekundä- rem Unionsrecht am Maßstab der Grundrechte des Grundgesetzes betroffen ist, solange die Eu- ropäische Union einen wirksamen Schutz der Grundrechte gegenüber der Hoheitsgewalt der Union generell gewährleistet, der dem vom Grundgesetz jeweils als unabdingbar gebotenen Grundrechtsschutz im Wesentlichen gleich zu achten ist, zumal den Wesensgehalt der Grund- rechte generell verbürgt. Das gilt für alle Rechtsetzungsakte nach Art. 288 Abs. 1-4 AEUV, also für Verordnungen ebenso wie für Richtlinien und an die Bundesrepublik Deutschland gerichtete Beschlüsse. Das Bundesverfassungsgericht behält sich die Kontrolle sekundären Unionsrechts am Maßstab der deutschen Grundrechte nur noch für den (ganz unwahrscheinlichen) Fall vor, dass die europäische Rechtsentwicklung einschließlich der Rechtsprechung des Europäischen Ge- 5 richtshofs … unter den erforderlichen Grundrechtsstandard abgesunken ist.“ „Umsetzungsgesetze unterliegen nicht der Prüfung des Bundesverfassungsgerichts, soweit sie Unionsrecht umsetzen, das keinen Umsetzungsspielraum lässt, sondern zwingende Vorgaben macht. (…) Die Frage, ob und inwieweit sekundäres Unionsrecht zwingende Vorgaben macht o- der noch Umsetzungsspielräume belässt, ist von den Fachgerichten zu klären, die dabei gegebe- nenfalls den EuGH im Wege der Vorabentscheidung gemäß Art. 267 Abs. 1 AEUV anrufen müs- 6 sen.“ *** 5 Maunz/Dürig/Dederer, 85. EL November 2018, GG Art. 100 Rn. 119 m.w.N. (Fettungen durch Verf.) 6 Maunz/Dürig/Dederer, 85. EL November 2018, GG Art. 100 Rn. 123 f. m.w.N. (Fettungen durch Verf.) Fachbereich WD 8 (Umwelt, Naturschutz, Reaktorsicherheit, Bildung und Forschung)

Aktuelle Luftqualität in Nordrhein-Westfalen - Neuer Bewertungsindex stärkt Gesundheitsvorsorge

Die Luftqualität wird in Nordrhein-Westfalen vom Landesamt für Natur, Umwelt und Klima gemessen und bewertet. Für die Bewertung gibt es neue Maßstäbe, die aktuelle Studien und Empfehlungen der Weltgesundheitsorganisation (WHO) berücksichtigen. Die Belastung unserer Atemluft kann zeitlich und räumlich stark schwanken. Viele Faktoren beeinflussen die Schadstoffkonzentration. Dazu gehören die Schadstoffausstöße aus Industrie, Verkehr oder Feuerstätten, die sich im Verlauf eines Tages, einer Woche oder eines Jahres stark verändern können. Auch Wetterverhältnisse beeinflussen die Konzentration von Schadstoffen in der Luft. Von der Bebauungsstruktur hängt ab, wie sich Schadstoffe ausbreiten. Deshalb werden innerhalb einer Stadt oder einer Region zum Teil sehr unterschiedliche Werte gemessen. Das LANUK bildet die regional unterschiedliche Luftqualität in Form eines Index´ im Internet ab. (https://luftqualitaet.nrw.de/lqitabelle.php) Aus den Ergebnissen der kontinuierlichen Luftüberwachung entsteht stündlich ein Index der Luftqualität für 60 verschiedene Orte in Nordrhein-Westfalen. Dazu gehören die Großstädte, viele kleinere Städte und ländliche Gebiete. Die Werte einer Messstation werden mit Hilfe von Schwellenwerten fünf Indexklassen von „sehr gut“ bis „sehr schlecht“ zugeordnet. Das Angebot umfasst die Daten für Stickstoffdioxid, Schwefeldioxid, Ozon und die Feinstaubfraktionen mit den Partikelgrößen von maximal 2,5 und 10 Mikrometern. Gesundheit im Fokus Seit Dezember 2024 gibt es die überarbeitete Luftqualitätsrichtlinie in der Europäischen Union. Sie schreibt unter anderem vor, dass die Öffentlichkeit und insbesondere vulnerable Personengruppen zeitnah über die Luftqualität informiert werden müssen. Das Umweltbundesamt hatte bereits seit 2019 ein Index-System zur Bewertung der Luftqualität verwendet. Das System wurde jetzt gemeinsam mit der IVU Umwelt GmbH und der Heinrich-Heine-Universität Düsseldorf weiterentwickelt. WHO Leitlinien und aktuelle Forschungen zu Krankheitshäufigkeiten und Sterblichkeit sind in die neuen Bewertungskriterien eingeflossen. Zu den verschiedenen Belastungsklassen gibt das Umweltbundesamt Verhaltenstipps für die Allgemeinbevölkerung und für empfindliche Personengruppen. Nach dem modernisierten Bewertungssystem wird auch die Luftqualität in Nordrhein-Westfalen bewertet. Das LANUK hat sein digitales Informationsangebot zum Thema Luft umfassend modernisiert. Das Informationssystem „Luftqualität.NRW“ ermöglicht den Zugang zu Messwerten, Zeitreihen, Tabellen und Karten. Für die 60 Orte in Nordrhein-Westfalen, an denen die Luftqualität kontinuierlich gemessen wird, sind die Ergebnisse als Stundenmittelwerte und als Luftqualitätsindex einsehbar. Die Daten werden stündlich aktualisiert. Aktuelle Luftqualität: https://luftqualitaet.nrw.de/lqitabelle.php Erläuterungen zum Luftqualitätsindex beim Umweltbundesamt: https://www.umweltbundesamt.de/der-luftqualitaetsindex-lqi-des-umweltbundesamtes zurück

Auf dem Weg zu einer neuen Europäischen Luftqualitätsrichtlinie

Die aktuell in Europa geltenden Luftqualitätsgrenzwerte sind teilweise mehr als 20 Jahre alt und entsprechen nicht den heutigen wissenschaftlichen Erkenntnissen über die gesundheitlichen Auswirkungen von Luftverschmutzung. Im Ergebnis eines umfangreichen Fitness Checks der aktuell geltenden Luftqualitätsrichtlinie hat die EU-Kommission am 26. Oktober 2022 ihren Vorschlag für eine Überarbeitung der Luftqualitätsrichtlinie vorgelegt, dem am 24. April 2024 durch das Europäische Parlament politisch zugestimmt wurde. Die Broschüre stellt die wichtigsten Neuerungen im Vergleich zu den derzeit gelten Luftqualitätsrichtlinien vor. Veröffentlicht in Hintergrundpapier.

1 2 3 4 512 13 14