API src

Found 712 results.

Similar terms

s/edrz/Erz/gi

IS RÜK 500 DS - Informationssystem Rohstoffübersichtskarte von Nordrhein-Westfalen 1:500.000 - Datensatz

Der Datensatz zum Informationssystem Rohstoffübersichtskarte von Nordrhein-Westfalen 1:500.000 [IS RÜK 500] gibt einen generalisierten Überblick über die Verteilung der Rohstoffvorkommen in dem Bundesland. Das Kartenwerk zeigt aktuell und historisch relevante Rohstoffvorkommen von Kohle und Gas, der Steine und Erden sowie von Steinsalz, Erzen und Mineralen.

Erbohrung des Brothers Vulkans - einem aktiven submarinen Inselbogen-Vulkan Neuseelands, Vorhaben: Petrologisch- geochemische Untersuchungen der magmatischen Prozesse

INSPIRE: Geoscientific Map of Germany 1:2,000,000 - Important deposits (GK2000 Lagerstätten)

The GK2000 Lagerstätten (INSPIRE) shows deposits and mines of energy resources, metal resources, industrial minerals and salt on a greatly simplified geology within Germany on a scale of 1:2,000,000. According to the Data Specifications on Mineral Resources (D2.8.III.21) and Geology (D2.8.II.4_v3.0) the content of the map is stored in three INSPIRE-compliant GML files: GK2000_Lagerstaetten_Mine.gml contains mines as points. GK2000_ Lagerstaetten _EarthResource_polygon_Energy_resources.gml contains energy resources as polygons. GK2000_ Lagerstaetten _GeologicUnit.gml contains the greatly simplified geology of Germany. The GML files together with a Readme.txt file are provided in ZIP format (GK2000_ Lagerstaetten -INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

Oberflächenfunktionalisierte und verschleißbeständige Bauteile aus metastabil-austenitischen Stählen: Additiv und induktiv hergestellte Bauteile auf unterschiedlichen Größenskalen, FH-Kooperativ 1-2023: Oberflächenfunktionalisierte und verschleißbeständige Bauteile aus metastabil-austenitischen Stählen: Additiv und induktiv hergestellte Bauteile auf unterschiedlichen Größenskalen (OMAS)

Multimodales luftgestütztes Quantensensor-basiertes Instrument zur nachhaltigen Exploration natürlicher Ressourcen, Teilprojekt 1: Systemelektronik und Systemmechanik

Schwerpunktprogramm (SPP) 527: Bereich Infrastruktur - International Ocean Discovery Program, Teilprojekt: Freisetzung von volatilen Komponenten und Erzmetallen aus Magmen intraozeanischer Bögen: Erkenntnisse aus Hochdruckexperimenten und der Analyse von Schmelzeinschlüssen am Beispiel des Brothers Vulkans, Kermadec-Bogen

Das Hauptziel der in 2018 durchgeführten IODP Expedition 376 war die Untersuchung magmatisch-hydrothermaler Systeme und damit assoziierter Erzmetallablagerungen (von z.B. Cu und Au) in intraozeanischen Vulkanbögen. Die Expedition konzentrierte sich auf die Erkundung des Brothers Unterwasservulkans, der, im Gegensatz zu einigen anderen Vulkansystemen entlang des Kermadec-Bogens, dazitische bis rhyolitische Schmelzen fördert. Besonders am Brothers Vulkan ist neben der extremen Anreicherung an Cl die große Bandbreite an unterschiedlichen Zusammensetzungen (z.B. im Alkali- und Aluminiumoxidgehalt und in Mg). Ziel des Vorhabens ist deshalb, die Natur und Zusammensetzung der freigesetzten volatilen Phasen (u.a. ob es sich um einphasige oder zweiphasige Fluide handelt) zu untersuchen, sowie deren Einfluss auf Fraktionierungstrends und auf die Anreicherung von Metallen während der Differenzierung.Um dies zu erreichen, werden komplementäre analytische und experimentelle Untersuchungen durchgeführt: 1) Hauptelementanalysen von Matrixgläsern und Glaseinschlüssen sollen Aufschluss über die Herkunft der felsischen Magmen sowie die Fraktionierungs- und Differenzierungsprozesse geben; 2) Hochdruck-Kristallisationsexperimente sollen die Bedingungen in der Magmakammer und die Rolle der volatilen Komponenten, insbesondere von Cl und H2O, bei der Fraktionierung von Magmen beleuchten; 3) Spurenelementanalysen von Glaseinschlüssen in Plagioklas und Klinopyroxen liefern Informationen über den Einfluss volatiler Komponenten und der Sauerstofffugazität auf die Anreicherung von Erzmetallen (z.B. Fe, Cu, Zn, W, Au). Da die meisten Glaseinschlüsse Quench-Kristalle und Blasen enthalten, müssen sie zunächst bei hohen Drücken wieder homogenisiert werden. Die Kombination der drei geplanten Arbeitspakete wird einen wichtigen Beitrag dazu leisten, die Entwicklung der Metallanreicherung in Cl-reichen magmatischen Systemen während der Differenzierung und im magmatisch-hydrothermalen Stadium nachvollziehen zu können.

Schwerpunktprogramm (SPP) 2238: Dynamik der Erzmetallanreicherung, Überquerung der magmatisch-hydrothermalen Grenzschicht innerhalb lagerstättenbildender Systeme mit numerischen Modellen

Zukünftige Explorationen für metallische Ressourcen werden auf größere Tiefen und untermeerische Bereiche abzielen, was kostspielig und technisch herausfordernd ist. Für diese Entwicklung benötigen wir belastbare Vorhersagemodelle, welche die entscheidenden Prozesse innerhalb ganzer lagerstättenbildender Systeme abbilden können. Magmatisch-hydrothermale Lagerstätten bilden unsere größten Ressourcen für Cu, Mo, Sn und W und entstehen durch Fluidentmischung aus magmatischen Intrusionen in ein Hydrothermalsystem im Umgebungsgestein. Das Potential, riesige ('world-class') Lagerstätten bilden zu können, hängt wesentlich von Fluidflüssen über diese magmatisch-hydrothermale Grenzschicht hinweg ab, welche jedoch die größte Unbekannte in unserem derzeitigen Verständnis dieser Lagerstätten darstellten und bislang in numerischen Simulationen lediglich parameterisiert werden können. Um diese Grenzprozesse abbilden zu können, benötigt es einen fundamental neuen Modellieransatz mit einem Kontinuum, das über die Tiefenbereiche von Hydrothermalsystemen hinaus reicht und die Lücke zwischen Fluidfluss und Magmadynamik überbrückt. Das Projekt CROWN wird neue Wege beschreiten, indem es eine konsistente Formulierung für Fluidgenese und -transport in einem gekoppelten Modell für viskoses Fliessen gemäß der Navier-Stokes-Gleichungen und poröses Fliessen nach dem Darcy Gesetz entwickelt. Außerdem, und sehr wichtig für die geologische Realitätsnähe, simuliert das Modell dynamische Permeabitätsänderungen und fokussiertes Fliessen entlang von Störungsbahnen. Die Simulationen richten sich an konzeptuellen Modellen aus der Literatur aus - darunter auch neue eigene Arbeit. Der Projektantrag hebt auch angedachte direkte Zusammenarbeiten mit anderen Projekten, die sich mit magmatisch-hydrothermalen Lagerstätten beschäftigen und für das DOME SPP beantragt wurden, hervor. Das Thema hat auch Verbindungen zu anderen SPP-Anträgen, welche sich mit Laborexperimenten beschäftigen, was noch weitere Möglichkeiten zur Zusammenarbeit eröffnet.

Bodenbelastung (Schwermetalle) - Bodenplanungsgebiet Stadt Salzgitter 1 : 50 000

In diesem Fachthema werden Flächen mit unterschiedlichen Bodenbelastungen (Schwermetallbelastungen) dargestellt. Die Schadstoffeinträge in die Böden sind darauf zurückzuführen, dass im Harz über Jahrhunderte Erze abgebaut und verarbeitet wurden. Dabei gelangten anorganische Schadstoffe wie Blei, Cadmium, Zink und Arsen in die Flüsse, die im Harz entspringen, und über den Wasserpfad auch in die Böden der historischen Flussauen. Räumlich betroffen sind vor allem: • der Harz selbst (Landkreise Goslar und Göttingen) • die Innerste-Aue (Landkreise Hildesheim und Wolfenbüttel, Städte Hildesheim und Salzgitter) • die Oker-Aue (Landkreise Wolfenbüttel und Gifhorn, Stadt Braunschweig) • und die Allerniederung (Landkreise Celle, Gifhorn und Soltau-Fallingbostel, Stadt Celle). Die Nutzung der betroffenen Flächen erfordert eine besondere Aufmerksamkeit, damit die Schadstoffe nicht zu Risiken für die menschliche Gesundheit führen oder eine Beeinträchtigung weiterer Böden bewirken. Dies gilt insbesondere für folgende Nutzungsarten: • Aufenthalt im Wohnumfeld (Hausgärten), • Freizeitaktivitäten, insb. auf Kinderspielflächen, • Landwirtschaft und Gartenbau, • Baumaßnahmen und Gewässerunterhaltung, durch die Bodenmaterial und Baggergut anfallen. In den belasteten Gebieten werden zahlreiche Menschen und Institutionen von der Problematik berührt: Haus- und Grundbesitzer, Landwirte, planende Gemeinden, Bauunternehmen, Abfallbehörden, Träger der Gewässerunterhaltung u.a.. Die Karte bietet eine räumliche Übersicht über die Erkenntnisse, für die die zuständigen Bodenschutzbehörden bereits verbindliche Regelungen zu den Bodenbelastungen erarbeitet und in Bodenplanungsgebietsverordnungen gefasst haben. Auf den Internetseiten der Behörden (Städte Hildesheim, Salzgitter, Braunschweig und Landkreise Hildesheim und Goslar) finden Sie weitere Einzelheiten über die geltenden Vorschriften. Für andere Gebiete sind 'Erwartungsflächen für Bodenbelastungen‘ dargestellt, auf denen nach dem gegenwärtigen Erkenntnisstand vor dem Hintergrund geowissenschaftlicher Erkenntnisse mit erhöhten Schadstoffgehalten im Boden zu rechnen ist. Bei diesen Gebietsdarstellungen handelt es sich zwangsläufig um vergröbernde Abschätzungen. Bei einer detaillierten Untersuchung einzelner Punkte oder Flächen können sich in den betreffenden Gebieten erhebliche Unterschiede im Schadstoffgehalt ergeben. Einige Flächen können auch unerhebliche Belastungen aufweisen.

GcBÜK400 - Blei im Oberboden

Blei ist ein toxisches Schwermetall und infolge seiner vielfältigen industriellen Verwendung allgegenwärtig in der Umwelt verbreitet. Die Eintragsquellen sind nicht nur auf den Bereich von Erzvorkommen beschränkt (vor allem Bleisulfid sowie dessen Oxidationsminerale). Blei wird ebenfalls anthropogen über die Verhüttung von Blei-, Kupfer- und Zinkerzen, die weiträumige Abgasbelastung des Kraftfahrzeugverkehrs (bis zur Einführung von bleifreiem Benzin bis zu 60 % der atmosphärischen Belastung), Recyclinganlagen von Bleischrott, die Verwendung schwermetallhaltiger Klärschlämme und Komposte sowie durch Kohleverbrennungsanlagen in den Boden eingetragen . Für unbelastete Böden wird in Abhängigkeit vom Ausgangsgestein ein Pb-Gehalt von 2 bis 60 mg/kg angegeben. Die durchschnittliche Pb-Konzentration der oberen kontinentalen Erdkruste (Clarkewert) beträgt 17 mg/kg, der flächenbezogene mittlere Pb-Gehalt für die sächsischen Hauptgesteinstypen liegt bei 20 mg/kg. Die Gesteine Sachsens weisen keine bzw. nur eine geringe geochemische Spezialisierung hinsichtlich des Bleis auf. Im nördlichen bzw. nordöstlichen Teil Sachsens treten in den Oberböden über den Lockersedimenten des Känozoikums (periglaziäre Sande, Kiese, Lehme, Löss) und den Granodioriten der Lausitz relativ niedrige Pb-Gehalte auf. Bei den Lockersedimenten steigt der Pb-Gehalt mit zunehmendem Tongehalt leicht an. Die Verwitterungsböden über den Festgesteinen des Erzgebirges, Vogtlandes und z. T. der Elbezone haben meist deutlich höhere Bleigehalte, die durch eine relative Anreicherung in den Bodenausgangsgesteinen verursacht werden. Das am höchsten mit Blei belastete Gebiet in Sachsen ist der Freiberger Raum. Durch die ökonomisch bedeutenden polymetallischen Vererzungen (Pb-Zn-Ag), die auch flächenhaft relativ weit verbreitet sind, kam es zu einer besonders starken Pb-Anreicherung in den Nebengesteinen und folglich auch bei der Bildung der Böden über den Gneisen. Zusätzlich entstanden enorme anthropoge Belastungen durch die Jahrhunderte währende Verhüttung der Primärerze und in jüngerer Zeit beim Recycling von Bleibatterien. Besonders hohe Pb-Gehalte treten dabei in unmittelbarer Nähe der Hüttenstandorte einschließlich der Hauptwindrichtungen, im Zentralteil der Quarz-Sulfid-Mineralisationen und in den Flussauen auf. Weitere Gebiete mit großflächig erhöhten Pb-Gehalten liegen vor allem im Osterzgebirge, in einem Bereich, der sich von Freiberg in südöstliche Richtung bis an die Landesgrenze im Raum Altenberg erstreckt und in den Erzrevieren des Mittel- und Westerzgebirges, so um Seiffen, Marienberg - Pobershau, Annaberg, Schneeberg, Schwarzenberg und Pöhla. Der Anteil von Pb-Mineralen in den Erzen dieser Regionen ist jedoch deutlich geringer. Durch häufige Vergesellschaftung von Pb und As in den Mineralisationen ist das Verbreitungsgebiet der erhöhten Pb-Gehalte im Osterzgebirge und untergeordnet im Westerzgebirge sowie in den Auen der Freiberger und Vereinigten Mulde der des Arsens ähnlich. Die Auenböden der Freiberger Mulde führen ab dem Freiberger Lagerstättenrevier extrem hohe Bleigehalte, die sich bis in die Auenböden der Vereinigten Mulde in Nordwestsachen fortsetzen. Die Auen der Elbe und der Zwickauer Mulde weisen durch geogene bzw. anthropogene Quellen (Lagerstätten, Industrie) im Einzugsgebiet ebenfalls Bereiche mit höheren Bleigehalten auf. Die Bleigehalte der Böden im Raum Freiberg und in den Auenböden der Freiberger und Vereinigten Mulde überschreiten z. T. flächenhaft die Prüf- und Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV)

INSPIRE: Map of Mineral Resources of Germany 1:1,000,000 (BSK1000)

The BSK1000 (INSPIRE) provides the basic information on the spatial distribution of energy resources and mineral raw materials (‘stones and earth’, industrial minerals and ores) in Germany on a scale of 1:1,000,000. The BSK1000 is published by the Federal Institute for Geosciences and Natural Resources in cooperation with the State Geological Surveys of Germany. According to the Data Specification on Mineral Resources (D2.8.III.21) the content of the map is stored in five INSPIRE-compliant GML files: BSK1000_Mine.gml contains important mines as points. BSK1000_EarthResource_point_Energy_resources_and_mineral_raw_materials.gml contains small-scale energy resources and mineral raw materials as points. BSK1000_EarthResource_polygon_Distribution_of_salt.gml contains the distribution of salt as polygons. BSK1000_EarthResource_polygon_Energy_resources.gml contains large-scale energy resources as polygons. BSK1000_EarthResource_polygon_Mineral_raw_materials.gml contains large-scale mineral raw materials as polygons. The GML files together with a Readme.txt file are provided in ZIP format (BSK1000-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

1 2 3 4 570 71 72