API src

Found 3487 results.

Similar terms

s/ein/Eis/gi

openSenseMap: Sensor Box idrop-bf2c02

Visualized position. Position does not represent exact sample coordinates. Do not use data set as point data.

openSenseMap: Sensor Box idrop-558fd8

Visualized position. Position does not represent exact sample coordinates. Do not use data set as point data.

Biogenic soil structures: feedbacks between bioactivity and spatial heterogeneity of water storage and fluxes from plot to hillslope scale

Soil structure determines a large part of the spatial heterogeneity in water storage and fluxes from the plot to the hillslope scale. In recent decades important progress in hydrological research has been achieved by including soil structure in hydrological models. One of the main problems herein remains the difficulty of measuring soil structure and quantifying its influence on hydrological processes. As soil structure is very often of biogenic origin (macropores), the main objective of this project is to use the influence of bioactivity and resulting soil structures to describe and support modelling of hydrological processes at different scales. Therefore, local scale bioactivity will be linked to local infiltration patterns under varying catchment conditions. At hillslope scale, the spatial distribution of bioactivity patterns will be linked to connectivity of subsurface structures to explain subsurface stormflow generation. Then we will apply species distribution modelling of key organisms in order to extrapolate the gained knowledge to the catchment scale. As on one hand, bioactivity influences the hydrological processes, but on the other hand the species distribution also depends on soil moisture contents, including the feedbacks between bioactivity and soil hydrology is pivotal for getting reliable predictions of catchment scale hydrological behavior under land use change and climate change.

Die Auswirkung extremer Schmelzereignisse auf die zukünftige Massenbilanz des grönländischen Eisschildes

Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.

ElementOne - Entwicklung eines 20 Megawatt-Wasserelektrolysemoduls sowie Aufbau und Qualifizierung der Anlage in Neom, Saudi-Arabien

openSenseMap: Sensor Box idrop-802ef9

Visualized position. Position does not represent exact sample coordinates. Do not use data set as point data.

openSenseMap: Sensor Box idrop-5636f6

openSenseMap: Sensor Box idrop-d93555

openSenseMap: Sensor Box idrop-b53d48

Landweingebiete im Saarland

Saarländischer Landwein Geschützte geografische Angabe : Zur geschützten geografischen Angabe gehören die Flächen der Städte und Gemeinden Merzig, Mettlach und Beckingen im Landkreis Merzig-Wadern, die Flächen der Städte und Gemeinden Rehlingen-Siersburg, Dillingen, Wallerfangen, Saarlouis, Ensdorf, Bous und Wadgassen im Landkreis Saarlouis, die Flächen der Städte und Gemeinden Mandelbachtal, Gersheim, Blieskastel, Homburg, Kirkel und Bexbach im Saar-Pfalz-Kreis, die Flächen der Städte und Gemeinden Völklingen, Saarbrücken, Kleinblittersdorf im Regionalverband Saarbrücken, die Flächen der Städte und Gemeinden Neunkirchen und Ottweiler im Landkreis Neunkirchen sowie die Flächen der Städte und Gemeinden St. Wendel, Oberthal und Nohfelden im Landkreis St. Wendel. Letztlich wachsen dort aber saarlandweit nur gut 10 ha Wein. Das Weinbaugebiet erstreckt sich entlang des saarländischen östlichen Randes des Pariser Beckens, der durch die Taleinschnitte der Flüsse Saar, Nied und Blies an ihrer südlichen Ausrichtung gute Bedingungen für Weinbau bietet.

1 2 3 4 5347 348 349