API src

Found 140 results.

Related terms

B 2: Lateral water flow and transport of agrochemicals - Phase 1

Das Projekt "B 2: Lateral water flow and transport of agrochemicals - Phase 1" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre durchgeführt. The project aims at developing a model of the dynamics of agrochemicals (fertilisers, pesticides) and selected heavy metals on a regional scale as a function of cropping intensity in the highland areas of Northern Thailand. The model shall predict the effects of cropping intensity on mobility and leaching of agrochemicals in the agriculturally used system itself but also on the chemical status of neighbouring ecosystems including downstream areas. The methods for measuring and estimating the fluxes of agrochemicals in soils will be adapted to the conditions of the soils and sites in Northern Thailand. Fluxes of agrochemicals will be measured in fruit tree orchards on the experimental sites established together with projects B1, C1 and D1. Also, processes governing the dynamics of agrochemicals will be studied. The objectives for the first phase are as follows: - To identify suitable study sites - To establish the methods for measuring the fluxes of agrochemicals in the study sites - To adopt the analytical procedures for pesticides - To identify and parametrise the processes governing the mobility of agrochemicals - To identify the major chemical transformation processes for agrochemicals in the soils of the project area - To establish models of the fate of agrochemicals an the plot scale. Dynamics of agrochemicals include processes of mobilisation/immobilisation, degradation and transport. Both, experiments and field inventories are needed to elucidate the complex interaction of the various processes. Field measurements of the fluxes of nutrient elements (N, P, K, Ca, Mg, Mn, Zn, Cu), pesticides and some heavy metals will be conducted at different regional scales (plot, agricultural system, small catchment, region). Laboratory and field experiments consider chemical, physicochemical and biological processes. Biological processes and degradation of pesticides will not be considered in the first phase of the project, however, they should be included later on. The project as a whole is broken down into three essential parts, which consecutively follow each other. The subproject is methods- and processes-orientated. Methods, which were developed in Hohenheim to quantify the fluxes of chemicals in soils have to be adapted to meet the requirements of the specific conditions in the study area. Recently, these methods are already under development in tropical environments (Vietnam, Costa Rica). After adaptation the methods will be used to yield flux data on the plot scale. These data are needed to help deciding which of the hypothesised processes are of major importance for modelling the dynamics of agrochemicals. The final outcome of this project phase are models of the fate of agrochemicals as a function of management intensity on the plot scale.

Ad hoc Beratung bei der Umsetzung der Monitoring Verordnung für die 4. Phase des EU Emissionshandels - Schwerpunkt: Regelungen zu Biomasse

Das Projekt "Ad hoc Beratung bei der Umsetzung der Monitoring Verordnung für die 4. Phase des EU Emissionshandels - Schwerpunkt: Regelungen zu Biomasse" wird vom Umweltbundesamt gefördert und von TÜV SÜD Industrie Service GmbH durchgeführt. Die Emissionshandelsrichtlinie bildet die Grundlage für den europäischen Emissionshandel. Sie wird in Deutschland durch das Treibhausgas Emissionshandelsgesetz (TEHG) in nationales Recht umgesetzt. § 6 Absatz 2 Satz 2 TEHG nimmt Bezug auf die Monitoring Verordnung (MVO). In dieser sind die wesentlichen Regelungen zur Emissionsüberwachung und berichterstattung festgelegt, unter anderem auch Regelungen zum Einsatz von Biomasse. Die überarbeitete EU Richtlinie für Erneuerbare Energien (RED II) hat Auswirkungen auf die Regelungen und den Vollzug der in 2021 beginnenden vierten Phase des europäischen Emissionshandelssystems. Ziel des Gutachtens ist, das Umweltbundesamt beider Auslegung der betreffenden Passagen des Rechtstextes und der Identifizierung der sich daraus ergebenden Nachweisführung für Treibhausgaseinsparung bzw. Nachhaltigkeit beim Einsatz von Biomasse zu unterstützen. Aus den Ergebnissen wird das Umweltbundesamt Konkretisierungsbedarf für die europäische und nationale Gesetzgebung als auch praktische Umsetzungshinweise zum Einsatz von Biomasse im Emissionshandel ableiten.

Biomass Fuell Cell Utility System (BIOCELLUS)

Das Projekt "Biomass Fuell Cell Utility System (BIOCELLUS)" wird vom Umweltbundesamt gefördert und von Technische Universität München, TUM School of Engineering and Design, Fakultät für Maschinenwesen, Lehrstuhl für Energiesysteme durchgeführt. Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.

A European Tracking System für Electricity - Phase II (E-Track II)

Das Projekt "A European Tracking System für Electricity - Phase II (E-Track II)" wird vom Umweltbundesamt gefördert und von Öko-Institut. Institut für angewandte Ökologie e.V. durchgeführt. *Phase II of the project will refine the proposed tracking standard, by integrating the new Guarantees of Origin for cogeneration, the implementation of which was due in 2007. A focus on the specific requirements from new Member States will be made. Furthermore, consumer organisations will be supported in defining their requirements on tracking systems and the related policies, and the views of non-domestic consumer groups will be sought. Finally, the action will develop a strategy for the further development of energy-related certification schemes and their potential integration. With Directives 96/02/EC and 2003/54/EC, the EU has introduced liberalisation of the electricity markets in its Member States and has created the framework for an internal European market for electricity. Directives 2001/77/EC and 2004/8/EC contain regulations on Guarantees of Origin, which serve to enable producers to demonstrate that the electricity they sell is produced from renewable energy sources or high efficiency cogeneration. Directive 2003/54/EC requires suppliers to provide details about their fuel mix and the respective environmental impact (disclosure). Disclosing a fuel mix or a green power product requires a procedure to track electricity generation attributes , such as fuel type, CO2 emissions etc.. from generators to electricity suppliers and their customers. Support systems for RES electricity and high efficiency cogeneration may require similar allocation systems. Such accounting systems can significantly contribute to transparency for the consumers choice and to improved market functioning. Harmonisation of such tracking schemes across Europe is a keystone for the development of a transparent internal European market for electricity. The E-TRACK project, which was terminated in June 2007, has successfully developed a blueprint for a European tracking standard. Principles of the standard have been taken over by several countries. However, tracking systems used in Europe are still far from being coordinated, and double counting and other errors can occur, which compromises the reliability of information provided to consumers and other actors.

SILVIA - Sustainable Road Surfaces for Traffic Noise Control

Das Projekt "SILVIA - Sustainable Road Surfaces for Traffic Noise Control" wird vom Umweltbundesamt gefördert und von Bundesanstalt für Straßenwesen (BASt) durchgeführt. The first objective is to develop a classification procedure combined with a conformity-of-production testing method. It will start from existing measurement methods, improve some of them and possibly develop new ones. The second objective is to test and specify road construction and maintenance techniques that would achieve satisfactory durability of the acoustic performances while complying with other requirements of sustainability like safety, pollution and mobility. The third objective is to develop a procedure for cost/benefit analysis of noise abatement measures. The fourth objective is to issue a 'European Guidance Manual on the Utilisation of Low-Noise Road Surfacing' to help decision-makers to rationally plan noise abating or preventing measures integrating low-noise surfaces with other noise control measures. Prime Contractor: Belgian Road Research Centre; Bruxelles; Belgie.

Product ban versus risk management by setting emission and technology requirements. The effect of different regulatory schemes taking the use of trichloroethylene in Sweden and Germany as an example

Das Projekt "Product ban versus risk management by setting emission and technology requirements. The effect of different regulatory schemes taking the use of trichloroethylene in Sweden and Germany as an example" wird vom Umweltbundesamt gefördert und von Universität Passau, Lehrstuhl für Wirtschafts- und Sozialpolitik durchgeführt. Vergleich der Ergebnisse der Umweltgesetzgebung in Schweden und Deutschland bezüglich der Emissionen in der Reinigung von Metalloberflächen.

Der Einfluss der Klimaerwärmung auf die Stabilität des Filchner Ronne Shelfeises und Folgen für die Drainage des mächtigen Antarktischen Eisschilds

Das Projekt "Der Einfluss der Klimaerwärmung auf die Stabilität des Filchner Ronne Shelfeises und Folgen für die Drainage des mächtigen Antarktischen Eisschilds" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Fachbereich Klimawissenschaften durchgeführt. New ocean-modelling data indicates that the impact of global warming might lead to a substantial regime shift of the Warm Deep Water path in the Weddell Sea, Antarctica, during the 21stcentury. This coincides with a significant increase of ice-shelf basal melting underneath the second largest Antarctic ice shelf, the Filchner-Ronne Ice Shelf (FRIS), which is located in the southern Weddell Sea. When ice shelves shrink, the reduced buttressing presumably triggers an increased drainage of the ice sheet in the hinterland. Significant parts of the West- and East Antarctic Ice Sheet drain through the FRIS. Hence, the possible impact on sea-level rise is expected to be large. Melting and an adjusting ice-shelf geometry then again have an impact on the ocean circulation. This emphasizes the necessity of a coupled ice sheet-ice shelf-ocean model to project the overall contribution of increased FRIS-melting to sea-level rise. We propose to quantify this contribution in three steps: First, a coupled ice sheet/shelf model of the FRIS region will be forced with basal melting, attained from Ocean General Circulation Models (OGCMs). Second, the altered ice shelf geometry modifies the ocean model's geometry. Finally, the feedbacks between ice and ocean are iteratively coupled. As a final result, we will quantify the drainage of the Antarctic Ice Sheet through FRIS and hence its likely contributionto sea-level rise for the next centuries.

Implementation of EC Requirements on End-of-Life Vehicles (2000/53/EC) in the Baltic States

Das Projekt "Implementation of EC Requirements on End-of-Life Vehicles (2000/53/EC) in the Baltic States" wird vom Umweltbundesamt gefördert und von Ökopol Institut für Ökologie und Politik GmbH durchgeführt.

E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries

Das Projekt "E 1.2: Multi-layer drying models for optimising high value crop drying in small scale food industries" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Agrartechnik, Fachgebiet Agrartechnik in den Tropen und Subtropen durchgeführt. Fruit tree cultivation is a suitable option for erosion control in mountainous regions of Southeast Asia. However, seasonal overproduction and insufficient access to markets can cause economic losses. The possibility of processing fruits locally could contribute considerably to increase and stabilize farm income. Currently, fruit drying methods in these areas are yielding products of inferior quality. Pre-treatments such as sulphurizing are commonly used, but can make the product undesirable for international markets. In addition, high energy requirements increase production costs significantly. Therefore, the objective of subproject E1.2 is to optimize the drying process of small-scale fruit processing industries in terms of dryer capacity, energy consumption and efficiency and end product quality. During SFB-phase II in E1.1, drying fundamentals for the key fruits mango, litchi and longan were established. In laboratory experiments, impacts of drying parameters on quality were investigated and numerical single-layer models for simulation of drying kinetics have been designed. In SFB-phase III this knowledge will be expanded with the aim of optimizing practical drying processes. Therefore, the single-layer models will be extended to multi-layer models for simulating bulk-drying conditions. The Finite Element Method (FEM) will be adapted to calculate heat and mass transfer processes. Thermodynamic behavior of batch and tray dryers will be simulated using Computational Fluid Dynamics (CFD) software. Drying facilities will be optimized by systematic parameter variation. For reduction of energy costs, the potential of solar energy and biomass will be investigated in particular. Further research approaches are resulting from cooperation with other subprojects. A mechanic-enzymatic peeling method will be jointly used with E2.3 for studying the drying behavior of peeled litchi and longan fruits. Furthermore, a fruit maturity sensor based on Acoustic Resonance Spectroscopy (ARS) will be developed in cooperation with E2.3 and B3.2. Finally, an internet platform will be built for exchange of farmer-processor information about harvest time and quantities to increase utilization of the processing facilities.

High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)

Das Projekt "High density power electronics for FC- and ICE-Hybrid Electric Vehicle Powertrains (HOPE)" wird vom Umweltbundesamt gefördert und von Siemens AG durchgeführt. Objective: The project HOPE is addressing power electronics. It is based on previous EU research projects like the recently finished FW5 HIMRATE (high-temperature power modules), FW5 PROCURE (high-temperature passive components), and MEDEA+ HOTCAR (high-temperature control electronics) and other EU and national research projects. The general objectives of HOPE are: Cost reduction; meet reliability requirements; reduction of volume and weight. This is a necessity to bring the FC- and ICE-hybrid vehicles to success. WP1 defines specifications common to OEM for FC- and ICE-hybrid vehicle drive systems; Identification of common key parameters (power, voltage, size) that allows consequent standardisation; developing a scalability matrix for power electronic building blocks PEBBs. The power ranges will be much higher than those of e.g. HIMRATE and will go beyond 100 kW electric power. WP2 works out one reference mission profile, which will be taken as the basis for the very extensive reliability tests planned. WP3 is investigating key technologies for PEBBs in every respect: materials, components (active Si- and SiC switches, passive devices, sensors), new solders and alternative joinings, cooling, and EMI shielding. In WP4 three PEBBs will be developed: HDPM (high density power module) which is based on double side liquid cooling of the power semiconductor devices; IML (power mechatronics module), which is based on a lead-frame technology; and SiC-PEBB inverter (silicon carbide semiconductor JFET devices instead of Si devices). WP5 develops a control unit for high-temperature control electronics for the SiC-PEBBs. Finally WP6 works on integrating the new technologies invented in HOPE into powertrain systems and carries out a benchmark tests. All the results achieved in HOPE will be discussed intensively with the proposed Integrated Project HYSIS where the integration work will take place. It is clear from the start that many innovations are necessary to meet the overall goal.

1 2 3 4 512 13 14