In the Earth, the dynamo action is strongly linked to core freezing. There is a solid inner core, the growth of which provides a buoyancy flux that drives the dynamo. The buoyancy in this case derives from a difference in composition between the solid inner core and the fluid outer core. In planetary bodies smaller than the Earth, however, this core differentiation process may differ - Fe may precipitate at the core-mantle boundary (CMB) rather than in the center and may fall as iron snow and initially remelt with greater depth. A chemical stable sedimentation zone develops that comprises with time the entire core - at that time a solid inner core starts to grow. The dynamics of this system is not well understood and also whether it can generate a magnetic field or not. The Jovian moon Ganymede, which shows a present-day magnetic dipole field, is a candidate for which such a scenario has been suggested. We plan to study this Fe-snow regime with both a numerical and experimental approach. In the numerical study, we use a 2D/3D thermo-chemical convection model that considers crystallization and sinking of iron crystals together with the dynamics of the liquid core phase (for the 3D case the influence of the rotation of the Fe snow process is further studied).The numerical calculations will be complemented by two series of experiments: (1) investigations in metal alloys by means of X-ray radioscopy, and (2) measurements in transparent analogues by optical techniques. The experiments will examine typical features of the iron snow regime. On the one hand they will serve as a tool to validate the numerical approach and on the other hand they will yield important insight into sub-processes of the iron snow regime, which cannot be accessed within the numerical approach due to their complexity.
In structured soils, the interaction of percolating water and reactive solutes with the soil matrix is mostly restricted to the surfaces of preferential flow paths. Flow paths, i.e., macropores, are formed by worm burrows, decayed root channels, cracks, and inter-aggregate spaces. While biopores are covered by earthworm casts and mucilage or by root residues, aggregates and cracks are often coated by soil organic matter (SOM), oxides, and clay minerals especially in the clay illuviation horizons of Luvisols. The SOM as well as the clay mineral composition and concentration strongly determine the wettability and sorption capacity of the coatings and thus control water and solute movement as well as the mass exchange between the preferential flow paths and the soil matrix. The objective of this proposal is the quantitative description of the small-scale distribution of physicochemical properties of intact structural surfaces and flow path surfaces and of their distribution in the soil volume. Samples of Bt horizons of Luvisols from Loess will be compared with those from glacial till. At intact structural surfaces prepared from soil clods, the spatial distribution (mm-scale) of SOM and clay mineral composition will be characterized with DRIFT (Diffuse reflectance infrared Fourier transform) spectroscopy using a self-developed mapping technique. For samples manually separated from coated surfaces and biopore walls, the contents of organic carbon (Corg) and the cation exchange capacity (CEC) will be analyzed and related to the intensities of specific signals in DRIFT spectra using Partial Least Square Regression (PLSR) analysis. The signal intensities of the DRIFT mapping spectra will be used to quantify the spatial distribution of Corg and CEC at these structural surfaces. The DRIFT mapping data will also be used for qualitatively characterizing the small scale distribution of the recalcitrance, humification, and microbial activity of the SOM from structural surfaces. The clay mineral composition of defined surface regions will be characterized by combining DRIFT spectroscopic with X-ray diffractometric analysis of manually separated samples. Subsequently, the spatial distribution of the clay mineral composition at structural surfaces will be determined from the intensities of clay mineral-specific signals in the DRIFT mapping spectra and exemplarily compared to scanning electron microscopic and infrared microscopic analysis of thin sections and thin polished micro-sections. The three-dimensional spatial distribution of the total structural surfaces in the volume of the Bt horizons will be quantified using X-ray computed tomography (CT) analysis of soil cores. The active preferential flow paths will be visualized and quantified by field tracer experiments. These CT and tracer data will be used to transfer the properties of the structural surfaces characterized by DRIFT mapping onto the active preferential flow paths in the Bt horizons.
Cherry leaf roll virus (CLRV) is a plant pathogen of economic and ecologic importance. It is globally distributed in a wide range of forest, fruit, and ornamental trees and shrubs. In several areas of cherry and walnut production CLRV causes severe losses in yield and quality. With current reference to the rapid dissemination and strong symptom expression in Finnish birches and the Germany-wide distribution of CLRV in birches and elderberry, we continuously investigate and gradually reveal CLRV transmission pathways as by pollen, seeds or water. However, modes and interactions responsible for the wide intergeneric host transmission as well as for the exceptional CLRV epidemic in Fennoscandia still remain unknown. In this project systematic studies shall investigate biological vectors as a causal agent to finally derive control mechanisms and strategies to avoid new epidemics in different hosts and geographic regions. Detailed monitoring of the invertebrate fauna of birch stands/forests and elderberry plantations in Germany and Finland shall reveal potential vectors to subsequently study them in detail by approved virus detection methods and transmission experiments. Molecular analyses of the CLRV coat protein shall prove its role as a viral determinant for a virus/vector interaction. Consequently, this project essentially will contribute important answers on the CLRV epidemiology, and this will be a key element within the first network of research on plant viral pathogens in forest trees.
Shallow groundwater of the huge deltaic systems of Asia like the Red River Delta in Vietnam is often enriched in inorganic arsenic (As), threatening the health of millions of residents. The massive abstraction of groundwater in these areas locally causes an irreversible mixing of arsenic-free groundwater resources with arsenic-rich groundwater. Increased concentrations of competitive anions, especially phosphate (PO43-), decrease the immobilization capacity of the sediments. During transport, the mobility of dissolved As in local aquifers is strongly influenced by adsorption to sedimentary and ubiquitously occurring iron(oxyhydr)oxides. Additionally, arsenic-rich groundwater is often enriched in reduced iron (Fe2+) as well, which is capable to react with iron(oxyhydr)oxides, thereby inducing mineral transformations. Such transformations permanently affect the arsenic adsorption and immobilization capacity of the sediments.Within the scope of this research project, the underlying mechanisms related to As transport and the resulting threat to arsenic-free groundwater resources will be characterized in cooperation with the Swiss Federal Institute of Aquatic Science and Technology (Eawag). The research concept aims at assessing the complex interactions within the arsenic-iron-phosphate-system under field conditions at a study site next to the Red River. First, filtration experiments using local groundwater enriched in As and PO43- will be used to determine the As adsorption capacity of different and previously geochemically characterized iron(oxyhydr)oxides. In a second step, sample carrier containing As loaded iron(oxyhydr)oxides will be introduced into surface near aquifer parts of the study site (via existing groundwater monitoring wells). These samples will be exposed to local groundwater characterized by increased As, Fe2+ and PO43- concentrations for the following nine months. Using the in situ exposition of predefined iron(oxyhydr)oxides, it will be possible to distinguish potential mineral transformations and their influences on the As immobilization capacity of the respective iron(oxyhydr)oxides. By combining the results and outcomes of the field experiments, new and important conclusions regarding the mobility of As can be drawn. The data can be used to create a hydrochemical transport model describing reactive As transport within the investigation area. In addition, the results of the in situ exposition experiments will allow to draw conclusions in respective to the long term As immobilization capacity of different iron(oxyhydr)oxides, which is an essential information regarding in situ decontamination techniques.
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
The decomposition of terrestrial organic material such as leaf litter represents a fundamental ecosystem function in streams that delivers energy for local and downstream food webs. Although agriculture dominates most regions in Europe and fungicides are applied widely, effects of currently used fungicides on the aquatic decomposer community and consequently the leaf decomposition rate are largely unknown. Also potential compensation of such hypothesised adverse effects due to nutrients or higher average water temperatures associated with climate change are not considered. Moreover, climate change is predicted to alter the community of aquatic decomposers and an open question is, whether this alteration impacts the leaf decomposition rate. The current projects follows a tripartite design to answer these research questions. Firstly, a field study in a vine growing region where fungicides are applied in large amounts will be conducted to whether there is a dose-response relationship between the exposure to fungicides and the leaf decomposition rate. Secondly, experiments in artificial streams with field communities will be carried out to assess potential compensatory mechanisms of nutrients and temperature for effects of fungicides. Thirdly, field experiments with communities exhibiting a gradient of taxa sensitive to climate change will be used to investigate potential climate-related effects on the leaf decomposition rate.
Salinity reduces the productivity of cucumber (Cucumis sativus L.) through osmotic and ionic effects. For given atmospheric conditions we hypothesize the existence of an optimal canopy structure at which water use efficiency is maximal and salt accumulation per unit of dry matter production is minimal. This canopy structure optimum can be predicted by integrating physiological processes over the canopy using a functional-structural plant model (FSPM). This model needs to represent the influence of osmotic stress on plant morphology and stomatal conductance, the accumulation of toxic ions and their dynamics in the different compartments of the system, and their toxic effects in the leaf. Experiments will be conducted to parameterize an extended cucumber FSPM. In in-silico experiments with the FSPM we attempt to identify which canopy structure could lead to maximum long-term water use efficiency with minimum ionic stress. The results from in-silico experiments will be evaluated by comparing different canopy structures in greenhouses. Finally, the FSPM will be used to investigate to which extent the improvement of individual mechanisms of salt tolerance like reduced sensitivity of stomatal conductance or leaf expansion can contribute to whole-plant salt tolerance.
Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.
The aim of P2 within the Research Unit 'The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)' is to contribute to the understanding of the different sources and stabilization processes of subsoil organic matter. This will be achieved by the analysis of the soil organic matter composition in topsoil versus subsoil by 13C NMR spectroscopy in bulk soils as well as organo-mineral associations. This will be done on a number of soil profiles differing in parent material and mineralogy and therefore also in the relevance of organo-mineral associations for subsoil C stabilization. In addition, a specific sampling approach will allow to differentiate three zones associated with the dominating effect of (1) leaching of DOC (the 'bulk soil' between trees), (2) root litter decomposition (the 'root-affected zone'), and (3) direct rhizodeposition of root exudates (the 'rhizosphere' sensu strictu). The contribution of above-ground versus below-ground litter is differentiated by the analysis of cutin and suberin biomarkers. Organic matter derived from microbial sources will be identified by the microbial signature of polysaccharides in the subsoil through the analysis of neutral sugars and amino sugars. Organo-mineral associations will be further characterized by N2-BET analyses to delineate the coverage of the mineral phase with organic matter. With these analyses and our specific analytical expertise at the submicron scale (nanoSIMS) we will participate in selected joint experiments of the research unit.
Soil microorganisms can mobilize and immobilize phosphorus (P), and therefore strongly affect the availability of P to plants. In this project we hypothesize that the ratio of labile P to microbial P increases during the transition from acquiring to recycling ecosystems. Microbial and plant P uptake will be studied with 33P that will be quantified in microbial and plant biomass as well as in lipids. To what extent microorganisms immobilize and mobilize P during decomposition of soil organic matter will be explored with a 14C/33P labeled monoester. Seasonal dynamics of actual and potential P mineralization (33P dilution and phosphatase activity), and microbial P immobilization will be studied with soils of the transition from acquiring to recycling ecosystems. The contribution of litter-derived P will be explored in a litter exclusion experiment in the field. Spatial patterns of microbial and plant P mineralization in the rhizosphere will be explored by analyses of areas of high acid and alkaline (=microbial-derived) phosphatase activity by soil zymography, and their relations with areas of high rhizodeposition (14C imaging). In conclusion, we will analyse mechanisms of actual and potential microbial P mineralization and immobilization, localization, and consequences for P uptake by plants.
| Origin | Count |
|---|---|
| Bund | 232 |
| Wissenschaft | 71 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Daten und Messstellen | 67 |
| Förderprogramm | 231 |
| Repositorium | 1 |
| unbekannt | 6 |
| License | Count |
|---|---|
| offen | 305 |
| Language | Count |
|---|---|
| Deutsch | 38 |
| Englisch | 293 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Datei | 58 |
| Keine | 188 |
| Webseite | 53 |
| Topic | Count |
|---|---|
| Boden | 217 |
| Lebewesen und Lebensräume | 241 |
| Luft | 227 |
| Mensch und Umwelt | 301 |
| Wasser | 202 |
| Weitere | 305 |