Soil microorganisms can mobilize and immobilize phosphorus (P), and therefore strongly affect the availability of P to plants. In this project we hypothesize that the ratio of labile P to microbial P increases during the transition from acquiring to recycling ecosystems. Microbial and plant P uptake will be studied with 33P that will be quantified in microbial and plant biomass as well as in lipids. To what extent microorganisms immobilize and mobilize P during decomposition of soil organic matter will be explored with a 14C/33P labeled monoester. Seasonal dynamics of actual and potential P mineralization (33P dilution and phosphatase activity), and microbial P immobilization will be studied with soils of the transition from acquiring to recycling ecosystems. The contribution of litter-derived P will be explored in a litter exclusion experiment in the field. Spatial patterns of microbial and plant P mineralization in the rhizosphere will be explored by analyses of areas of high acid and alkaline (=microbial-derived) phosphatase activity by soil zymography, and their relations with areas of high rhizodeposition (14C imaging). In conclusion, we will analyse mechanisms of actual and potential microbial P mineralization and immobilization, localization, and consequences for P uptake by plants.
The nature of the microbial communities inhabiting the deeper soil horizons is largely unknown. It is also not clear why subsurface microorganisms do not make faster use of organic compounds under field conditions. The answer could be provided by a reciprocal soil transfer experiment studying the response of transferred soils to fluctuations in microclimate, organic inputs, and soil biota. The subproject P9 will be responsible for the establishment of reciprocal transfer experiments offering a strong link between subgroups interested in organic matter quality, transport of organic substances, as well as functions of the soil microbial community. A single, high molecular weight substrate (13C labelled cellulose) will be applied at two different levels in the pre-experiment to understand the dose-dependent reaction of soil microorganisms in transferred surface and sub-soils. Uniformly 13C labelled beech roots - representing complex substrates - will be used for the main reciprocal soil transfer experiment. We hypothesize that transferring soil cores between subsoil and surface soil as well as addition of labelled cellulose or roots will allow us to evaluate the relative impact of surface/subsurface habitat conditions and resource availability on abundance, function, and diversity of the soil microbial community. The second objective of the subproject is to understand whether minerals buried within different soil compartments (topsoil vs. subsoil) in the field contribute to creation of hot spots of microbial abundance and activity within a period of two to five years. We hypothesize that soil microorganisms colonize organo-mineral complexes depending on their nutritional composition and substrate availability. The existence of micro-habitat specific microbial communities could be important for short term carbon storage (1 to 6 years). The third objective is to understand the biogeography and function of soil microorganisms in different subsoils. Parent material as well as mineral composition might control niche differentiation during soil development. Depending on size and interconnectedness of niches, colonization and survival of soil microbial communities might be different in soils derived from loess, sand, terra fusca, or sandstone. From the methodological point of view, our specific interest is to place community composition into context with soil microbial functions in subsoils. Our subgroup will be responsible for determining the abundance, diversity, und function of soil microorganisms (13C microbial biomass, 13C PLFA, enzyme activities, DNA extraction followed by quantitative PCR). Quantitative PCR will be used to estimate total abundances of bacteria, archaea and fungi as well as abundances of specific groups of bacteria at high taxonomic levels. We will apply taxa specific bacterial primers because classes or phyla might be differentiated into ecological categories on the basis of their life strategies.
It is well established that reduced supply of fresh organic matter, interactions of organic matter with mineral phases and spatial inaccessibility affect C stocks in subsoils. However, quantitative information required for a better understanding of the contribution of each of the different processes to C sequestration in subsoils and for improvements of subsoil C models is scarce. The same is true for the main controlling factors of the decomposition rates of soil organic matter in subsoils. Moreover, information on spatial variabilities of different properties in the subsoil is rare. The few studies available which couple near and middle infrared spectroscopy (NIRS/MIRS) with geostatistical approaches indicate a potential for the creation of spatial maps which may show hot spots with increased biological activities in the soil profile and their effects on the distribution of C contents. Objectives are (i) to determine the mean residence time of subsoil C in different fractions by applying fractionation procedures in combination with 14C measurements; (ii) to study the effects of water content, input of 13C-labelled roots and dissolved organic matter and spatial inaccessibility on C turnover in an automatic microcosm system; (iii) to determine general soil properties and soil biological and chemical characteristics using NIRS and MIRS, and (iv) to extrapolate the measured and estimated soil properties to the vertical profiles by using different spatial interpolation techniques. For the NIRS/MIRS applications, sample pretreatment (air-dried vs. freeze-dried samples) and calibration procedures (a modified partial least square (MPLS) approach vs. a genetic algorithm coupled with MPLS or PLS) will be optimized. We hypothesize that the combined application of chemical fractionation in combination with 14C measurements and the results of the incubation experiments will give the pool sizes of passive, intermediate, labile and very labile C and N and the mean residence times of labile and very labile C and N. These results will make it possible to initialize the new quantitative model to be developed by subproject PC. Additionally, we hypothesize that the sample pretreatment 'freeze-drying' will be more useful for the estimation of soil biological characteristics than air-drying. The GA-MPLS and GA-PLS approaches are expected to give better estimates of the soil characteristics than the MPLS and PLS approaches. The spatial maps for the different subsoil characteristics in combination with the spatial maps of temperature and water contents will presumably enable us to explain the spatial heterogeneity of C contents.
Dieser Fortsetzungsantrag eines bestehenden Forschungsprojekts innerhalb der Forschergruppe INUIT (Ice Nuclei Research UnIT) hat zum Ziel, die physikalischen und chemischen Eigenschaften von atmosphärischen Eiskeimen (ice nucleating particles, INP) und Eispartikelresiduen (ice particle residuals, IPR) zu untersuchen. Es werden hauptsächlich zwei Messtechniken eingesetzt: virtueller Gegenstromimpaktor und Laserablationsmassenspektrometrie. Eiskeime (INP) aus atmosphärischem Aerosol werden erst in einem Eiskeimzähler aktiviert, so dass sich Eiskristalle bilden, die dann mit einem bepumpten Gegenstromimpaktor aufgrund ihrer Größe extrahiert und verdunstet werden können. Die freigesetzten INP können wiederum mit dem Massenspektrometer oder anderen Messtechniken untersucht werden. Dieses Experiment wird während einer Feldmesskampagne in der Nähe der Quellen von potentiell guten Eiskeimen (Mineralstaub, Biopartikel, anthropogene Partikel) durchgeführt. Ein geeigneter Kampagnenort hierfür ist die Mittelmeerregion, z.B. Südspanien. Die Eispartikelresiduen werden direkt aus unterkühlten Mischphasenwolken gesammelt. Hierzu wird ein spezieller Eis-Gegenstromimpaktor eingesetzt, der nur Eiskristalle sammelt und von den unterkühlten Wolkentröpfchen trennt. Nach der Sammlung wird das Eis der Eiskristalle verdunstet, so dass die Eisresidualpartikel freigesetzt werden und mittels des Laser- Ablationsmassenspektrometers analysiert werden können. Dieses Experiment wird auf einer Bergstation (Jungfraujoch) durchgeführt. Die Kombination aus Eiskeimzähler, bepumptem Gegenstromimpaktor und Massenspektrometer wird auch unter Laborbedingen zur Bestimmung der Eiskeimfähigkeit von internen und externen Partikelmischungen (z.B. biologisch/mineralisch) betrieben. Das Laserablationsmassenspektrometer in seiner Eigenschaft als Einzelpartikel-Analysegerät wird ebenfalls dazu eingesetzt, um den Mischungszustand der erzeugten Mischpartikel zu charakterisieren.
Sekundäre Partikelneubildung ist eine Hauptquelle für atmosphärische Partikel mit wichtigen Folgen für das Klima und die menschliche Gesundheit. Dieses Vorhaben untersucht die Rolle von Luft Ionen bei der sekundären Partikelneubildung in Flussreaktor- und Aerosolkammer-Experimenten unter kontrollierten Laborbedingungen. Trotz beträchtlicher Fortschritte in der Messtechnik zur Untersuchung der atmosphärischen Nukleation und des Partikelwachstums bestehen weiterhin Verständnislücken hinsichtlich der grundlegenden physikalischen und chemischen Prozesse. Insbesondere die möglichen Effekte von Ionen-Partikel-Wechselwirkungen und von Ionenchemie auf die Partikelneubildung werden kontrovers diskutiert. In Ergänzung zu bestehenden Forschungsprogrammen hinsichtlich der Rolle von Ionen im initialen Nukleationsschritt wird vorgeschlagen, Ionen-Partikel-Wechselwirkungen während des anschließenden Partikelwachstums zu untersuchen und sich dabei auf direkte Messungen des Ladungszustands, der Wachstumsraten und der chemischen Zusammensetzung von sekundärem organischem Aerosol zu konzentrieren. Hierzu werden der Ladungszustand und die Wachstumsraten von Partikelpopulationen mit einem modifizierten Mobilitätspartikelspektrometer unter wohldefinierten Randbedingungen in Laborexperimenten quantifiziert. In einem nächsten Schritt werden die neuartigen Messmöglichkeiten unseres Aerosol-Massenspektrometers CAChUP voll ausgeschöpft, um den Beitrag verschiedener organischer Vorläufergase zur chemischen Zusammensetzung von sekundärem organischen Aerosol bei variierenden Ladungszuständen zu quantifizieren. Schließlich werden die Ergebnisse dieser Experimente durch Messungen zur sekundären organischen Partikelbildung bei wohldefinierten Ionenkonzentrationen an einer Aerosolkammer überprüft. Die vorgeschlagene Forschungsagenda ist somit darauf abgestimmt, mögliche ladungs-katalysierte chemische Mechanismen bei der sekundären Aerosolbildung besser einzuordnen.
Dies ist die SenseBox vor dem Forum der experimenta. Kommt gerne vorbei und schaut euch auch die anderen Citizen Science Projekte in unserem Welterforscher im Forum an.
Changes in agroecosystem management (e.g. landscape diversity, management intensity) affect the natural control of pests. The effects of agricultural change on this ecosystem service, however, are not universal and the mechanisms affecting it remain to be understood. As biological control is effectively the product of networks of interactions between pests and their natural enemies, food web analysis provides a versatile tool to address this gap of knowledge. The proposed project will utilize a molecular food web approach and examine, for the first time, how changes in plant fertilisation and landscape complexity affect quantitative aphid-parasitoid-hyperparasitoid food webs on a species-specific level to unravel how changes in food web interactions affect parasitoid aphid control. Based on the fieldderived data, cage experiments will be conducted to assess how parasitoid diversity and identity affect parasitoid interactions and pest control, complementing the field results. The work proposed here will take research on parasitoid aphid control one step further, as it will provide a clearer understanding of how plant fertilization affects whole aphid-parasitoid food webs in both simple and complex landscapes, allowing for further improvements in natural pest control.
Arsenic-contaminated ground- and drinking water is a global environmental problem with about 1-2Prozent of the world's population being affected. The upper drinking water limit for arsenic (10 Micro g/l) recommended by the WHO is often exceeded, even in industrial nations in Europe and the USA. Chronic intake of arsenic causes severe health problems like skin diseases (e.g. blackfoot disease) and cancer. In addition to drinking water, seafood and rice are the main reservoirs for arsenic uptake. Arsenic is oftentimes of geogenic origin and in the environment it is mainly bound to iron(III) minerals. Iron(III)-reducing bacteria are able to dissolve these iron minerals and therefore release the arsenic to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II)- oxidation at neutral pH followed by iron(III) mineral precipitation. This process may reduce arsenic concentrations in the environment drastically, lowering the potential risk for humans dramatically.The main goal of this study therefore is to quantify, identify and isolate anaerobic and aerobic Fe(II)-oxidizing microorganisms in arsenic-containing paddy soil. The co-precipitation and thus removal of arsenic by iron mineral producing bacteria will be determined in batch and microcosm experiments. Finally the influence of rhizosphere redox status on microbial Fe oxidation and arsenic uptake into rice plants will be evaluated in microcosm experiments. The long-term goal of this research is to better understand arsenic-co-precipitation and thus arsenic-immobilization by iron(II)-oxidizing bacteria in rice paddy soil. Potentially these results can lead to an improvement of living conditions in affected countries, e.g. in China or Bangladesh.
Traditional Indonesian homegardens harbour often high crop diversity, which appears to be an important basis for a sustainable food-first strategy. Crop pollination by insects is a key ecosystem service but threatened by agricultural intensification and land conversion. Gaps in knowledge of actual benefits from pollination services limit effective management planning. Using an integrative and agronomic framework for the assessment of functional pollination services, we will conduct ecological experiments and surveys in Central Sulawesi, Indonesia. We propose to study pollination services and net revenues of the locally important crop species cucumber, carrot, and eggplant in traditional homegardens in a forest distance gradient, which is hypothesized to affect bee community structure and diversity. We will assess pollination services and interactions with environmental variables limiting fruit maturation, based on pollination experiments in a split-plot design of the following factors: drought, nutrient deficiency, weed pressure, and herbivory. The overall goal of this project is the development of 'biodiversity-friendly' land-use management, balancing human and ecological needs for local smallholders.
| Origin | Count |
|---|---|
| Bund | 274 |
| Wissenschaft | 71 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Daten und Messstellen | 67 |
| Förderprogramm | 273 |
| Repositorium | 1 |
| unbekannt | 6 |
| License | Count |
|---|---|
| offen | 347 |
| Language | Count |
|---|---|
| Deutsch | 48 |
| Englisch | 332 |
| Resource type | Count |
|---|---|
| Archiv | 6 |
| Datei | 58 |
| Keine | 222 |
| Webseite | 61 |
| Topic | Count |
|---|---|
| Boden | 256 |
| Lebewesen und Lebensräume | 281 |
| Luft | 260 |
| Mensch und Umwelt | 343 |
| Wasser | 234 |
| Weitere | 347 |