API src

Found 8593 results.

Related terms

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>&nbsp;</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

FP4-NNE-THERMIE C, Variable speed technology for low heat hydropower systems

Objective: Aim is to modify two small hydropower plants to variable speed operation in order to increase annual energy output by improved part load efficiency and design flow. A 100 kW vertical axis Francis turbine (Kaltenburg, DE) and a new 18 kW waterwheel (Bettborn, LU) will be modified to variable speed operation by use of a AC-AC converter. There will be installed a movable free-overfall weir at the waterwheel. By an expected increase of the electricity production in the range of 10 to 20 per cent , the aim is to proof viability of improving existing low head hydro sites with this technology. Especially low head sites have high variation of head and flow. Variable speed technology allows the system to operate at maximum efficiency for a wide range of hydraulic conditions. Modern power electronics replaces complex mechanical control systems with a high need for maintenance. In wind energy, variable speed technology has already proven its advantages compared to other mechanical technologies. General Information: Unlike earlier approaches with a combination of double regulated turbines and variable speed in a new installation, in this project the combination of a Francis turbine (respectively a water wheel) in existing plants together with a frequency converter will be used to increase part load efficiency and design flow of the system. Only the new IGBT controlled converters which are now used in wind energy as well as in motive power industry appliances can guarantee a reliable variable speed operation of a normal asynchronous generator. The combination of the movable weir and variable speed operation of the water wheel will allow to optimise the power output of the plant under all conditions. The use of an IGBT converter makes it possible to compensate reactive power to improve the mains performance. Due to detailed theoretical analysis and according to the positive experience with variable speed operation in wind energy and motive power technology, the expected increase of the annual power output of the two plants is in the range of 10 to 20 per cent of the actual value. This will reduce the specific cost of the electricity by the same range. For the actual payback tariffs of many European countries, this will increase the number of feasible low head sites. The top water level control by variation of turbine speed (and so flow) will be demonstrated to show a simple, reliable and energy saving alternative to the old hydraulic systems, which are still installed in many sites. The success of the variable speed system in this plants will open a big European SME market for cheap technological improvement of small hydropower plants and low head sites. The monitored performance of the plants data will be stored in a data logger with a modem, to allow automatic down-loading from a server-PC via modem. ... Prime Contractor: Universität Kassel, Fachbereich Elektrotechnik/Informatik, Institut für Elektrische Energietechnik - IEE; Kassel; Germany.

SACI II - Vorkammer-Brennverfahren mit alternativen Kraftstoffen

Flexible Photovoltaik mit 16% Wirkungsgrad auf Basis organischer Solarzellen, Flex16 - Flexible Photovoltaik mit 16% Wirkungsgrad auf Basis organischer Solarzellen

EnEff:Stadt: Energieeffizienzsteigerung durch die klimaangepasste, synergetische Nutzung von innovativem Energie- und Regenwassermanagement für das Stadtquartier ecoSquare, Teilvorhaben: Untersuchungen zur Verdunstungskühlung, Solarenergie mit Gründächern und Biodiversität

Hochleistungs-Halbleiter für eine energieeffiziente Hoch-spannungs-Gleichstrom-Übertragung, Teilvorhaben: Leistungsdichteanhebung des HGÜ-Konverters

Die neue Bundesregierung hat im Koalitionsvertrag festgelegt, dass im Jahr 2030 80% des Strombedarfs aus erneuerbaren Energien stammen sollen. Offshore Windenergie ist ein wesentlicher Bestandteil dieser ehrgeizigen Ziele. Die Kapazitäten sollen auf mindestens 30 GW in 2030, 40 GW in 2035 und 70 GW in 2045 ausgebaut werden. Die Anbindung der Windparks an das Verbundnetz erfolgt dann über Hochspannungs-Gleichstrom-Übertragung, genauso wie der Transport der elektrischen Energie in die Verbrauchszentren West- und Süddeutschlands. Damit wird auch der Wirkungsgrad der Hochspannungs-Gleichstrom-Übertragung noch wichtiger. Größter Hebel - sowohl für die Wirkungsgradverbesserung als auch für die Reduktion der Investitionskosten der HGÜ Konverter - ist dabei die Reduktion der Anzahl der in Reihe geschalteten Submodule. Die Reihenschaltzahl ist durch die Sperrspannung der verwendeten Leistungshalbleiter bestimmt. Um die genannte Einsparziele zu erreichen, muss eine ganze Reihe innovativer Lösungen erforscht werden. Der Konverter muss für eine höhere Spannung pro Submodul geeignet sein, die Submodule müssen für die höhere Betriebsspannung ertüchtigt werden, vor allem aber - und dies ist die zentrale Innovation - muss die Sperrspannung der IGBT Module von 4500 V auf 6500 V angehoben werden, ohne dass die Verluste dabei signifikant steigen. Um dieses Ziel erreichen zu können, sind daher grundlegende Forschungsarbeiten an verschiedenen Stellen erforderlich. Es müssen sowohl die Chiptechnologie von IGBT und Diode, die Aufbau- und Verbindungstechnik im Modul als auch die Ansteuertechnik substantiell verbessert werden und kontinuierlich im Wechselspiel auf ihren Nutzen und ihre Umsetzbarkeit für zukünftige HGÜ Anlagen geprüft und co-optimiert werden.

Innovative alkalische Membran-Elektroden-Designs für kostengünstigen grünen Wasserstoff im Gigawatt-Maßstab

Entwicklung einer erdvergrabbaren Elektrofahrzeug-Schnellladesäule mit einer zusätzlichen Versorgung durch das Oberleitungs-Bahnstromnetz

Ziel ist es, eine hocheffiziente und skalierbare Schnellladesäule für Elektrofahrzeuge mit 50 kW Ladeleistung zu entwickeln. Die Besonderheit dieser Ladesäule wird sein, dass durch eine Neuentwicklung der benötigten Leistungselektronik wahlweise die Oberleitung des Bahnstromnetzes oder das öffentlichen Stromnetz für die Energieversorgung genutzt werden kann. Durch die neue Alternative des Bahnstromnetzes zum Anschluss der Ladesäule entsteht die Möglichkeit, auf ein bereits vorhandenes und mit freien Kapazitäten versehenes Netz zurückzugreifen. Dadurch soll sich die Ausbaugeschwindigkeit der Ladesäulen besonders im Bereich der elektrifizierten Bahnstrecken deutlich erhöhen. Als zweites Projektziel wird eine Erhöhung des Wirkungsgrades der verbauten Leistungselektronik auf über 98% angestrebt. Durch die, dadurch verringert anfallende Wärmeenergie wird es möglich sein, auf eine aktive Kühlung zu verzichten. Dies hat zur Folge, dass die Ladesäulentechnik an sich erdvergrabbar wird und oberirdisch nur noch ein simpler Ladepunkt mit Modul zur Abrechnung sichtbar bleibt. Durch diese Platz Einsparung entstehen Möglichkeiten z.B. vor allen in dicht bebauten Bereichen, weitere Parkplätze bereit zu stellen, die andernfalls aus technischen Gründen mit der vorhandenen Technologie hätten belegt werden müssen.

Entwicklung einer erdvergrabbaren Elektrofahrzeug-Schnellladesäule mit einer zusätzlichen Versorgung durch das Oberleitungs-Bahnstromnetz, Teilvorhaben: Entwicklung einer neuartigen und hocheffizienten Leistungselektronik

Ziel ist es, eine hocheffiziente und skalierbare Schnellladesäule für Elektrofahrzeuge mit 50 kW Ladeleistung zu entwickeln. Die Besonderheit dieser Ladesäule wird sein, dass durch eine Neuentwicklung der benötigten Leistungselektronik wahlweise die Oberleitung des Bahnstromnetzes oder das öffentlichen Stromnetz für die Energieversorgung genutzt werden kann. Durch die neue Alternative des Bahnstromnetzes zum Anschluss der Ladesäule entsteht die Möglichkeit, auf ein bereits vorhandenes und mit freien Kapazitäten versehenes Netz zurückzugreifen. Dadurch soll sich die Ausbaugeschwindigkeit der Ladesäulen besonders im Bereich der elektrifizierten Bahnstrecken deutlich erhöhen. Als zweites Projektziel wird eine Erhöhung des Wirkungsgrades der verbauten Leistungselektronik auf über 98% angestrebt. Durch die, dadurch verringert anfallende Wärmeenergie wird es möglich sein, auf eine aktive Kühlung zu verzichten. Dies hat zur Folge, dass die Ladesäulentechnik an sich erdvergrabbar wird und oberirdisch nur noch ein simpler Ladepunkt mit Modul zur Abrechnung sichtbar bleibt. Durch diese Platz Einsparung entstehen Möglichkeiten z.B. vor allen in dicht bebauten Bereichen, weitere Parkplätze bereit zu stellen, die andernfalls aus technischen Gründen mit der vorhandenen Technologie hätten belegt werden müssen.

Energieeffiziente und CO2-neutrale Stahlproduktion durch Einsatz additiver Fertigung und intelligenter Steuerung im Elektrolichtbogenofen, Teilprojekt GWI: Numerische und experimentelle Untersuchung des zu entwickelnden Brennersystems

1 2 3 4 5858 859 860