API src

Found 8590 results.

Related terms

Untersuchung des EU Nachhaltigkeitssystems für Biokraftstoffe

Die Europäische Richtlinie für erneuerbare Energien (RED) enthält derzeit ein Ziel von 10Prozent erneuerbaren Energien im Verkehrssektor der EU im Jahr 2020. Biokraftstoffe werden bei der Zielerreichung voraussichtlich eine wichtige Rolle spielen. Sämtliche Biokraftstoffe, die auf diese Ziel angerechnet werden, müssen die Erfüllung von verbindlichen Nachhaltigkeitskriterien nachweisen. Zwei Jahre nach der Implementierung der Nachhaltigkeitsanforderungen hat die Europäische Kommission Ecofys gemeinsam mit Winrock und dem Institut für europäische Umweltpolitik (IEEP) beauftragt die praktische Umsetzung der Nachhaltigkeitsanforderungen anhand von drei wichtigen Aspekten zu überprüfen: 1) Notwendigkeit der Einführungen verpflichtender Nachhaltigkeitsanforderungen für Biokraftstoffe zum Schutz von Wasser, Boden und Luft: Die Risiken für Wasser, Boden und Luft durch den Anbau von Biokraftstoffrohstoffen unterscheiden sich kaum von den Risiken anderer landwirtschaftlicher Ausdehnung. Dennoch kann der Biokraftstoffmarkt zu einem erhöhten Druck auf die bestehende Ackerfläche führen. Der Schutz von Wasser, Boden und Luft ist lokal zu betrachten, da die Auswirkungen von der jeweiligen Betriebsführung vor Ort abhängig sind. Im Bericht werden bestehende Maßnahmen zur Vermeidung dieser Risiken, wie etwa freiwillige Nachhaltigkeitsstandards, untersucht und mögliche Kriterien für die Europäische Kommission entwickelt. 2) Effektivität und Verwaltungsaufwand nationaler Systeme zum Nachweis der Erfüllung der verpflichtenden Nachhaltigkeitsanforderungen: Die EU Mitgliedsstaaten haben unterschiedlichen Ansätze zur Implementierung der Nachhaltigkeitsanforderungen verfolgt. Die Wahl des entsprechenden Nachhaltigkeitssystems als solches sagt noch nichts über Effektivität oder Verwaltungsaufwand, allerdings können die entsprechenden Ausgestaltungen schon einen Einfluss haben. Die Ausgestaltung der Berichtspflicht oder die Möglichkeit des Nachweises der Nachhaltigkeit durch alternativer Mechanismen können beispielsweise einen beträchtlichen Einfluss haben. Im Bericht werden Empfehlungen gegeben, wie die Mitgliedsstaaten die Effektivität erhöhen und unnötigen Verwaltungsaufwand vermeiden können. Die nächste Herausforderung für die Mitgliedsstaaten ist die Harmonisierung der verschiedenen Systeme, um so die Effektivität EU weit zu erhöhen. 3) Erfahrungen in der Umsetzung des Massenbilanzsystems zur Überprüfung der Nachhaltigkeit entlang der Biokraftstofflieferkette: Die Biokraftstoffproduzenten haben große Anstrengungen unternommen, um die Rückverfolgbarkeit ihrer Lieferkette zu gewährleisten. Im Großen und Ganzen würden es die Stakeholder bevorzugen, wenn die EU an dem bestehenden Massenbilanzsystem festhält und sicherstellt, dass der gegenwärtige Ansatz optimiert und in allen Mitgliedsstaaten und Nachhaltigkeitssystemen vereinheitlicht wird. (Text gekürzt)

FP4-NNE-THERMIE C, Variable speed technology for low heat hydropower systems

Objective: Aim is to modify two small hydropower plants to variable speed operation in order to increase annual energy output by improved part load efficiency and design flow. A 100 kW vertical axis Francis turbine (Kaltenburg, DE) and a new 18 kW waterwheel (Bettborn, LU) will be modified to variable speed operation by use of a AC-AC converter. There will be installed a movable free-overfall weir at the waterwheel. By an expected increase of the electricity production in the range of 10 to 20 per cent , the aim is to proof viability of improving existing low head hydro sites with this technology. Especially low head sites have high variation of head and flow. Variable speed technology allows the system to operate at maximum efficiency for a wide range of hydraulic conditions. Modern power electronics replaces complex mechanical control systems with a high need for maintenance. In wind energy, variable speed technology has already proven its advantages compared to other mechanical technologies. General Information: Unlike earlier approaches with a combination of double regulated turbines and variable speed in a new installation, in this project the combination of a Francis turbine (respectively a water wheel) in existing plants together with a frequency converter will be used to increase part load efficiency and design flow of the system. Only the new IGBT controlled converters which are now used in wind energy as well as in motive power industry appliances can guarantee a reliable variable speed operation of a normal asynchronous generator. The combination of the movable weir and variable speed operation of the water wheel will allow to optimise the power output of the plant under all conditions. The use of an IGBT converter makes it possible to compensate reactive power to improve the mains performance. Due to detailed theoretical analysis and according to the positive experience with variable speed operation in wind energy and motive power technology, the expected increase of the annual power output of the two plants is in the range of 10 to 20 per cent of the actual value. This will reduce the specific cost of the electricity by the same range. For the actual payback tariffs of many European countries, this will increase the number of feasible low head sites. The top water level control by variation of turbine speed (and so flow) will be demonstrated to show a simple, reliable and energy saving alternative to the old hydraulic systems, which are still installed in many sites. The success of the variable speed system in this plants will open a big European SME market for cheap technological improvement of small hydropower plants and low head sites. The monitored performance of the plants data will be stored in a data logger with a modem, to allow automatic down-loading from a server-PC via modem. ... Prime Contractor: Universität Kassel, Fachbereich Elektrotechnik/Informatik, Institut für Elektrische Energietechnik - IEE; Kassel; Germany.

Steuerung des Energieverbrauchs in der Fertigung und Steigerung der Energieeffizienz durch Automatisierung (ECOMATION)

Im Fokus bisheriger Maßnahmen zur Energieeffizienzsteigerung steht die permanente Verbesserung von Prozessketten, Verfahren und Maschinenwirkungsgraden. Da Maschinen und Anlagen unter ständig wechselnden Anforderungen und Randbedingungen betrieben werden, erschließt eine derartige Optimierung im Mittel nur einen Teil des Effizienzpotenzials. Maßnahmen zum energieoptimalen Betrieb und zur Steuerung von Maschinen und Anlagen unter Berücksichtigung der Energieeffizienz und weiterer Zielkriterien in situationsbezogener Gewichtung müssen dies ergänzen. Ziel der beantragten Forschergruppe ECOMATION ist es daher, Methoden zur Energieeinsparung durch Automatisierung für die Fertigungstechnik zu entwickeln. Durch situationsoptimales Ansteuern von Komponenten in maschinennahen Energieregelkreisen wird der Verbrauch der einzelnen Maschine minimiert. In maschinenfernen Energieregelkreisen auf Leitebene werden die Planung optimiert, Verlustherde in Anlagen und Fabriken identifiziert und Verbesserungsmaßnahmen eingeleitet. Als Grundlage für die Maßnahmen zur Effizienzsteigerung werden der von den Komponenten und dem Fertigungsverfahren verursachte Energieverbrauch, die Aufteilung in Nutz- und Verlustanteil und Möglichkeiten zur Beeinflussung des Energieverbrauchs analysiert und in Modelle überführt. Um Messdaten handhabbar und aussagefähig zu machen und Vorhersagen zu ermöglichen, wird eine im Bereich der Fertigungstechnik neuartige Modellierungstechnik entwickelt. Es werden Methoden entwickelt, um Verbrauch und Effizienzressourcen auf Basis der Maschinensignale per Software und unter minimalem Einsatz von Zusatzsensorik zu erfassen. Das Bild zeigt den Informationsfluss in einer Produktion mit ECOMATION in zwei Maschinennahen und zwei Maschinenfernen Energieregelkreisen.

Leistungssteigerung bei der Querstrommikrofiltration durch Dean-Wirbel

Druckgetriebene Filtrationsprozesse, wie z.B. die Querstrommikrofiltration, sind in ihrer Leistungsfaehigkeit durch Effekte wie Fouling und Konzentrationspolarisation bzw. Deckschichtwachstum beschraenkt. Ziel der hier genannten Arbeit ist es, durch eine gezielte Induzierung von Stroemungsinstabilitaeten in Form von Sekundaerstroemungen das Deckschichtwachstum an der Membran zu limitieren, somit hoehere Filtratfluesse zu erzielen und den Filtrationsprozess insgesamt effizienter zu betreiben. Die Stroemungsinstabilitaeten werden durch die Stroemungsfuehrung in maeanderfoermig gekruemmten Kapillarmembranen aufgrund von Zentrifugalkraeften erzeugt. In Technikumsversuchen mit Latex- und Hefesuspensionen konnte nachgewiesen werden, dass sich der Filtratfluss durch den Einsatz von Dean Wirbeln gegenueber der Filtration mit geraden Kapillarmembranen um bis zu 140 Prozent steigern laesst, die Effizienz des Prozesses kann bei gleichem spezifischen Filtratfluss sogar um bis zu 400 Prozent hoeher sein. Neben den experimentellen Untersuchungen erfolgt eine intensive theoretische Betrachtung des Filtrationsprozesses. Mit Hilfe einer CFD-Software werden die hydrodynamischen Vorgaenge untersucht und in Hinblick auf den Deckschichtaufbau analysiert. Die Berechnung mehrphasiger Stroemungen und der Ablagerungsmechanismen von Partikeln soll in Zukunft durch die Simulation des dynamischen Deckschichtaufbaus in maeanderfoermig gekruemmten Kapillarmembranen erfolgen und zur Optimierung von Filtrationsmodulen hinsichtlich der Hydrodynamik herangezogen werden.

Mit Sensoren für eine saubere Fahrweise

Die Motoren von Binnenschiffen gelten allgemein als ineffizient und dreckig - ihr Schadstoffausstoß gilt immer noch als zu hoch. Aber ist diese pauschale Aussage richtig? Die Ladungsmenge auf einem einzelnen Binnenschiff übertrifft diejenige von LKW und Bahn um ein Vielfaches, wodurch der Transport im Allgemeinen sehr effizient ist. Trotzdem ist der Schadstoffausstoß verhältnismäßig hoch, weshalb die Europäische Union die Grenzwerte für ausgestoßene Schadstoffe auch für die Binnenschifffahrt verschärfen wird. Im Rahmen des europäischen Forschungs- und Innovationsprogramms HORIZON2020 beteiligt sich die BAW am Vorhaben PROMINENT (promoting innovation in the inland waterways transport sector; http://www.prominent-iwt.eu/). Das Vorhaben hat zum Ziel, den Treibstoffbedarf und die Luftschadstoffemissionen der Binnenschiffe durch technische Maßnahmen und energieeffiziente Navigation zu reduzieren. Mit der Entwicklung eines Assistenzsystems erhält ein Schiffsführer Hinweise, wie er seinen Zielhafen treibstoffsparend und termingerecht erreichen kann. Dafür werden neben Motor- und Verbrauchsdaten von Schiffen auch Informationen zur Wassertiefe, Strömungsgeschwindigkeit und Wasserspiegellage für den zu befahrenden Flussabschnitt benötigt. Da präzise Peildaten und mehrdimensionale numerische Modelle nicht flächendeckend für alle Wasserstraßen innerhalb der EU verfügbar sind, rüstet die BAW Binnenschiffe mit Messgeräten zur Erfassung von Sohlenhöhen und Strömungsgeschwindigkeiten aus. Dabei werden gleichermaßen die Machbarkeit und der Aufwand für die Installation und den Betrieb der Sensorik bewertet. Die Reederei Deymann Management GmbH und Co. KG mit Sitz in Haren (Ems) unterstützt das Vorhaben, indem sie die Installation der Sensoren auf dem Großmotorgüterschiff (GMS) MONIKA DEYMANN gestattet. Das Schiff wurde im Juli 2016 in den Dienst gestellt. Die BAW hat in der Bauphase den Einbau und die Verkabelung der geplanten Sensoren mit der Reederei sowie der ausführenden Werft abgestimmt und durchgeführt. Das 135 m lange und 14,2 m breite GMS verkehrt derzeit im Liniendienst zwischen Antwerpen und Mainz. Es fährt in der Regel mit drei Lagen Containern, woraus ein mittlerer Tiefgang zwischen 1,8 m und 2,5 m resultiert. Für einen Umlauf Antwerpen - Mainz - Antwerpen werden sieben bis acht Tage benötigt, sodass das Schiff den Mittelrhein rund zweimal pro Woche passiert. Eine besondere Herausforderung ist es, von einem Binnenschiff aus die Strömungsgeschwindigkeiten im laufenden Schiffsbetrieb zu erfassen, da die Strömung im nahen Umfeld des Schiffes durch das Rückströmungsfeld gestört wird. Dessen Größe und Ausdehnung hängt insbesondere vom Gewässerquerschnitt und der Schiffsgeschwindigkeit gegenüber Wasser ab. Bei geringen Wassertiefen kann daher die Geschwindigkeit nicht vertikal unter einem Binnenschiff gemessen werden, wie es bei Messschiffen sonst üblich ist. (Text gekürzt)

Optimierung von Waermetauschersystemen fuer Abgasreinigungsanlagen

Der Waermeuebergang und Druckverlust in Regeneratoren werden experimentell und theoretisch untersucht. Hierbei sind profilierte Bleche (glatt und emailliert) als Speichermaterial eingesetzt. Insbesondere wird der Einfluss von Verschmutzung und von Erosion auf den Waermeuebergang und Druckverlust untersucht. Hierzu werden u.a. Versuche in einem Grosskraftwerk in Suedafrika durchgefuehrt, da dort durch die stark aschehaltige Kohle besonders grosse Erosion auftritt. Diese Werte werden mit Ergebnissen verglichen, die bei Windkanalversuchen ermittelt wurden. Ziel der Untersuchungen ist die Bereitstellung von Berechnungsunterlagen fuer eine Optimierung derartiger Anlage hinsichtlich einer vorzugebenden Zielgroesse.

Verbesserung von Umwelt- und Arbeitsschutz bei der Hochleistungszerspanung (Drehen und Fraesen) hochfester Werkstoffe durch 'trockenen Heissschnitt' mittels eines neuartigen Kombiverfahrens der Minimalmengenkuehlschmierung (MMKS)

EnEff:Stadt: Energieeffizienzsteigerung durch die klimaangepasste, synergetische Nutzung von innovativem Energie- und Regenwassermanagement für das Stadtquartier ecoSquare, Teilvorhaben: Entwicklung Planungswerkzeug und Entwicklung Energiekonzept

Digitalisierung in der Forsttechnik (Digi4+)

Zielsetzung: Der vorliegende Projektentwurf zielt darauf ab, die Kosten- und Energieeffizienz sowie die möglichen Umweltauswirkungen von forstlichen Wertschöpfungsketten durch Digitalisierung im Maschinen- und Prozessbereich zu verbessern. Die Praxistauglichkeit der Anwendungsbeispiele steht dabei besonders im Focus. Im Detail sollen nachfolgende Fragestellungen beantwortet werden: Räumlich explizite Abschätzung der Schadholzmengen nach einem Windwurfereignis für eine Modellregion sowie Entwicklung eines optimalen Aufarbeitungskonzepts. - Mit welchen Werkzeugen, Methoden und Modellen kann das Ausmaß und die räumliche Konzentration der geworfenen/geschädigten Bäume schnellstmöglich ermittelt werden? - Wie können geschädigte Bäume sicher geerntet werden, um Pilz- oder Insektenbefall und Feuerrisiko vorzubeugen und um eine Wiederaufforstung zu ermöglichen? - Wie kann die Qualität des Holzes durch effiziente Lagerung und Konservierung erhalten werden, um Lieferungen an die holzverarbeitende Industrie und damit das Einkommen der Waldbesitzer zu erhalten? Evaluierung der wissenschaftlichen und praktischen Anwendbarkeit von sog. Smart Services (z.B. Husqvarna Fleet Services oder Stihl Smart Connector) bei der Motorsäge. Durchführung von Produktivitätsstudien mit dem Ziel die Effizienz und Ergonomie bei der Motorsägentätigkeit zu verbessern. Entwicklung eines Tools für Mastseilgeräte, welches Produktions- und Betriebsparameter für weitergehende Analysen (z.B. Produktivität, Treibstoffverbrauch usw.) zur Verfügung stellt sowie die Kommunikation mit anderen Akteuren entlang der Wertschöpfungskette erlaubt. Implementierung von StanForD als Datenstandard. Optimierung der Holzernte am Steilhang durch Einsatz innovativer Technologien. Der Schwerpunkt liegt bei der hochmechanisierten Holzernte mit Motorsäge und Mastseilgerät mit Prozessor im Baumverfahren sowie der traktionswindenunterstützten vollmechanisierten Holzernte mit Harvester und Forwarder im Sortimentsverfahren. Effizienzsteigerungen, Treibstoffverbrauchsreduktion und Ressourcenschonung (Bestand und Boden) sind dabei die wichtigsten Optimierungsziele. Bedeutung des Projekts für die Praxis: In Zukunft werden in Wirtschaft und Gesellschaft die Relevanz und das Ausmaß der Digitalisierung noch stärker zunehmen. Das vorliegende Projekt soll die Akzeptanz der Akteure entlang der Wertschöpfungskette Holz im Zusammenhang mit Digitalisierungsentwicklungen steigern und Ihnen die Bedeutung und Chancen der Digitalisierung besser bewusstmachen. Aus der Sicht der Forstwirtschaft kann die erfolgreiche Anwendung von digitalen Technologien nicht nur zur Stärkung der Wettbewerbsfähigkeit beitragen, sondern liefert in Zeiten des Klimawandels wichtige Impulse zur Steigerung der Energie- und Kosteneffizienz sowie Ressourcenschonung in Kontext mit einem klimaangepassten Waldmanagement. Der digitale Wandel unterstützt die nachhaltige Entwicklung und den Klimaschutz. (Text gekürzt)

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Abb. „Installierte Leistung zur Stromerzeugung aus konventionellen Kraftwerken). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 21 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf knapp 191 GW (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“).</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 53 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren mehr als verdoppelt. Mit einem Zubau von über 18 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zugelegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,3 GW neue Windenergie-Leistung zugebaut (2023: 3,2 GW; 2022: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2024 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,7 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Beim ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des eingesetzten fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig (siehe Tab. "Genehmigte oder im Genehmigungsverfahren befindliche konventionelle Kraftwerksprojekte").</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen brauchen. Dabei handelt es sich um einen Ausbau von Speichern (etwa Pumpspeicher, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs („Demand Side Management").</p>

1 2 3 4 5857 858 859