Selenium (Se) is essential to human health, yet harmful in high doses. Of the water-soluble Se redox species, Se(IV) readily adsorbs onto iron and aluminium oxides. Se(VI), the dominant form in oxygenated waters, is more mobile and less readily adsorbed. In this study, the removal of Se(VI) by reduction with Fe(II) to Se(IV) and subsequent adsorption onto iron hydroxides is investigated in a pilot plant for biological iron and manganese removal from groundwater to investigate an economical approach for Se removal during drinking water production. While Se(IV) is removed by up to 90%, Se(VI) shows no removal over 48 h. In batch-shaking tests, the adsorption of Se(IV) and Se(VI) onto iron hydroxides with and without addition of Fe(II) or dithionite as reducing agents was studied. Se(IV) was removed to a greater extent by adsorption than Se(VI) (7% and 2.6%, respectively, at a starting concentration of 0.1 mg/L) and the addition of reducing agents resulted in no significantly higher removal of Se(VI). Reducing Se(VI) with Fe(II) or dithionite and consequent adsorption onto iron hydroxides can therefore be excluded as viable removal mechanism for Se(VI). © 2023 by the authors
The fine fraction of granular ferric hydroxide (MyGFH, < 0.3 mm) is a promising adsorbent for the removal of heavy metals and phosphate, but properties of MyGFH were hitherto not known. The present study aimed at characterizing MyGFH regarding its physical and chemical properties and at evaluating methods for the conditioning of fixed-bed filters in order to develop a process that combines filtration and adsorption. Conditioning was done at different pH levels and for different particle sizes. Anthracite, coke, pumice and sand were studied as potential carrier materials. A method for the evaluation of the homogeneity of the iron hydroxide particle distribution on pumice filter grains using picture analysis was developed. Pre-washed pumice (pH 8.5) proved to lead to high embedment and a homogeneous distribution of MyGFH. Filter runs with phosphate (2 mg/L P) showed similar breakthrough curves for the embedded fine fraction adsorbent and for conventional GFH. © 2018 by the authors.
Aktuelle Arbeiten - Endlager Morsleben Übersicht über die wesentlichen Arbeiten in den Kalenderwochen 23 und 24/2019 Gewährleistung der Betriebssicherheit Bergleute müssen das Endlager nach Berg- und Atomrecht betreiben. Bergleute lösen auf der 1. Ebene (Sohle) der Schachtanlage Bartensleben lockeres Salzgestein (Löser) von der Decke (Firste) eines Abbaus. Im Kontrollbereich auf der 4. Ebene der Schachtanlage Bartensleben installieren Mitarbeiter des bergmännischen Vermessungswesens (Markscheiderei) Längenmessgeräte (Extensometer) in von Bergleuten hierfür hergestellten Bohrungen. Die Messgeräte geben Aufschluss über Bewegungen im Gestein und dienen zur Überwachung des bergbaulichen Zustands des Endlagers. Im Einlagerungsbereich auf der 4. Ebene der Schachtanlage Bartensleben wird im Untertagemessfeld (UMF) die Rückholbarkeit von Spezialcontainern mit zwischengelagerten radioaktiven Abfällen nachgewiesen. Diese Überprüfung erfolgt vierteljährlich. Bergleute befahren die 5. Ebene zur jährlichen bergbaulichen Kontrolle. Dieser Grubenbereich umfasst zum größten Teil nur Erkundungsstrecken. Sachverständige überprüfen die Verbindungen zwischen Förderkorb und Förderseil (Zwischengeschirr) an den Seilfahrtanlagen der Schächte Bartensleben und Marie. Im Gespräch Im Rahmen unserer Öffentlichkeitsarbeit können sich alle interessierten Bürgerinnen und Bürger über das Endlager Morsleben informieren und mit uns ins Gespräch kommen. Darüber hinaus tauschen wir uns mit Wissenschaftlerinnen und Wissenschaftlern fachlich aus und lassen diese Rückmeldungen in unsere Arbeit einfließen. Am 5. Juni befahren internationale Gäste, die sich fachlich mit der Entsorgung von radioaktiven Abfällen und der Stilllegung von kerntechnischen Anlagen auseinandersetzen, das Endlager Morsleben. Der Besuch der Gruppe von Vertretern wissenschaftlicher Beiräte verschiedener Nationen ( „Chairs of National Advisory Bodies to Government“ ), die ihre Regierungen in Entsorgungsfragen beraten, wurde von der Entsorgungskommission des Bundes (ESK) im Rahmen eines Austauschtreffens organisiert. In der Infostelle Morsleben besuchen rund 15 Gäste die Informationsveranstaltung „Betrifft: Morsleben – Abdichtung im Anhydrit – Planungen und Lösungen“ . Einblick Aufgenommen im November 2017 Das Bild zeigt das Untertagemessfeld (UMF) im Ostfeld des Kontrollbereichs auf der vierten Ebene (Sohle) der Schachtanlage Bartensleben. Im UMF sind geringe Mengen (Volumen) radioaktiver Abfälle zwischengelagert . Die Abfälle wurden in Edelstahlhülsen bzw. Innenbehälter in insgesamt sieben Spezialcontainern verpackt und in zwei verrohrten Sohlenbohrlöchern rückholbar gelagert. Die zwischengelagerten Abfälle wurden im Zeitraum zwischen 1985 und 1990 eingelagert. Sie bestehen hauptsächlich aus Kobalt-60-Strahlenquellen. Zusätzlich enthalten sind vier Cäsium-137-Strahlenquellen und 12 mit Europiumoxid gefüllte Stahlstäbe. Mit einem Teil dieser Quellen wurde im Endlager Morsleben die Einlagerung von wärmentwickelnden radioaktiven Abfällen erforscht. Ziel der Forschung war es, herauszufinden, welche Wirkung die Wärmeentwicklung auf das umgebene Salzgestein hat. Der andere Teil der Quellen stammt aus dem Einsatz in der Wasserwirtschaft in der ehemaligen Deutschen Demokratischen Republik (DDR). Dort wurden Trinkwasserbrunnen mit Strahlenquellen ausgestattet, um einer Verockerung der Brunnenfilter (Bildung von „Eisenstein“ – Eisenhydroxid und Manganoxid - aufgrund mikrobieller Tätigkeit) entgegenzuwirken und somit die Nutzungsdauer der Brunnen zu verlängern. Die im UMF befindlichen radioaktiven Abfälle sind aktuell noch immer zwischengelagert, da sie die in der Dauerbetriebsgenehmigung formulierten Annahmebedingungen für eine Endlagerung nicht erfüllen. Die Zwischenlagerung ist seitens der zuständigen Genehmigungsbehörden befristet genehmigt. Die BGE prüft vierteljährig die Rückholung der im UMF gelagerten Abfälle. Für den Nachweis der Rückholbarkeit werden die obersten Spezialcontainer mit einer Hebevorrichtung ein paar Meter angehoben und wieder herabgesetzt. Neben den Abfällen im UMF sind im Endlager Morsleben noch weitere radioaktive Abfälle in einem mit Beton ausgekleideten Sohlenbohrloch nahe des Ostfeldes im Kontrollbereich auf der 4. Ebene der Schachtanlage Bartensleben zwischengelagert. Bei diesen Abfällen handelt sich um Radiumpräparate (Strahlenquellen) aus der medizinischen Anwendung in der DDR. Die Endlagerung der zwischengelagerten Abfälle ist im Rahmen des Planfeststellungsverfahren zur Stilllegung des Endlagers Morsleben beantragt. Mit dem Verbleib der Abfälle im Endlager, soll das Risiko, Menschen radioaktiver Strahlung auszusetzen, entsprechend dem Minimierungsgebot des Strahlenschutzes in Deutschland möglichst gering gehalten werden. Ein Transport in ein Zwischenlager oder eine Landessammelstelle für radioaktive Abfälle würde keinen weiteren Sicherheitsgewinn bringen und widerspricht damit dem Minimierungsgebot. Über die Aktuellen Arbeiten Mit den aktuellen Arbeiten bieten wir Ihnen einen regelmäßigen Überblick zu den wichtigsten Arbeiten und Meilensteinen im Endlager Morsleben. Die Arbeiten sind den wesentlichen Projekten zugeordnet, um den Fortschritt der einzelnen Projekte nachvollziehbar zu dokumentieren. Wir bitten zu beachten, dass nicht alle Arbeiten, die täglich über und unter Tage stattfinden, an dieser Stelle dokumentiert werden können. Bei Bedarf steht Ihnen das Team der Infostelle Morsleben gerne für weitere Auskünfte zur Verfügung. Links zum Thema Alle Wochenberichte im Überblick
In order to reach 4 (micro)g l-1 vanadium in drinking water adsorption onto in-situ biogenic amorphous ferric hydroxide (AFH) is identified as robust new treatment. The evaluation of its technical feasibility and robustness was the aim of this study. As approach at pilot-scale, Fe(II) and oxygen was dosed before pilot waterworks and Fe(II) subsequently biotically oxidized and precipitated in a filter bed. The so in-situ generated biogenic AFH served as adsorbent for vanadium removal. Results show that an initial vanadium concentration of 30 (micro)g l-1 was removed to below 4 (micro)g l-1, if at least 3 mg l-1 Fe(II) were dosed, resulting in a loading of 8.7 mg V per g AFH. A vanadium concentration of 60 (micro)g l-1 with a dosage of 3 mg l-1 Fe(II) was the upper limit for sufficient removal. Vanadium removal increased with increasing pH in the technical setup, due to faster oxidation of Fe(II) in the supernatant, even though adsorption capacity of AFH decreases with increasing pH. A filtration velocity of 20 m h -1 represented the highest velocity to undercut 4 (micro)g l-1 vanadium in the effluent. By mixing Fe(II) containing groundwater with oxygen and vanadium containing water prior to an adsorption filter with AFH sufficient removal was reached, however dependent on the resulting Fe(II) concentration. © 2023 by the authors
Hexavalent chromium is highly toxic and elaborate technology is necessary for ensured removal during drinking water production. The present study aimed at estimating the potential of a micro-sized iron hydroxide (nGFH] adsorbent for chromate removal in competition to ions presents in drinking water. Freundlich and Langmuir models were applied to describe the adsorption behaviour. The results show a high dependency on the pH value with increasing adsorption for decreasing pH values. The adsorption capacity in deionized water (DI) at pH 7 was 5.8mg/g Cr(VI) while it decreased to 1.9mg/g Cr(VI) in Berlin drinking water (DW) at initial concentrations of 1.2mg/L. Desorption experiments showed reversible adsorption indicating ion exchange and outer sphere complexes as main removal mechanisms. Competing ions present in DW were tested for interfering effects on chromate adsorption. Bicarbonate was identified as main inhibitor of chromate adsorption. Sulfate, silicate and phosphate also decreased chromate loadings, while calcium enhanced chromate adsorption. Adsorption kinetics were highly dependent on particle size and adsorbent dose. Adsorption equilibrium was reached after 60ââą ¯min for particles smaller than 63nm, while 240 min were required for particles from 125nm to 300nm. Adsorption kinetics in single solute systems could be modelled using the homogeneous surface diffusion model (HSDM) with a surface diffusion coefficient of 4x10-14m2/s. Competitive adsorption could be modelled using simple equations dependent on time, adsorption capacity and concentrations only. © 2018 Elsevier Ltd. All rights reserved.
Recent toxicological findings and expected lower regulatory limits for chromate (hexavalent chromium, Cr(VI)) in drinking water enforce the search for practical treatment options for efficient Cr(VI) removal. Cr(VI) adsorption and chemical reduction of highly soluble Cr(VI) to much less soluble Cr(III) are the main options that have already been experimentally investigated. Granular ferric hydroxide (GFH) is an established adsorbent for different pollutants but only to a limited extent for Cr(VI). The present study aimed at enriching ferrous iron (Fe(II)) as reducing constituent in the GFH to integrate reductive capabilities and thus to enhance Cr(VI) elimination. Three different batches were prepared and analyzed with regard to elemental and mineralogical compositions in comparison to conventional GFH. Long-term column tests showed enhanced Cr(VI) elimination in the modified materials with remarkably extended run-times until breakthrough. © 2019 Elsevier B.V. All rights reserved.
Die Andreas Blum & Sohn GbR hat am 20.07.2019, ergänzt am 18.12.2019, beim Landratsamt Neu-Ulm die immissionsschutzrechtliche Genehmigung nach § 16 BImSchG für die wesentliche Änderung der Beschaffenheit und des Betriebes ihrer Biogasanlage beantragt. Inhalt des Genehmigungsantrags ist: - die Errichtung und der Betrieb eines vierten BHKWs im Container mit einer FWL von 1861 kW - die Errichtung und der Betrieb einer Trafostation für dieses BHKW - der Neubau einer Gasaufbereitung bestehend aus Gaskühlung und Aktivkohlefilter - die Anpassung und Erweiterung der Umwallung nach den Vorgaben der AwSV - die Errichtung und der Betrieb eines Pumphauses mit Schacht und Kreiselpumpe - die Einbringung von Rindermist und Additiven zur Biogaserzeugung (Spurenelementmi-schungen und Eisenhydroxid) Zusätzlich soll aus formalen Gründen die nach § 15 BImSchG angezeigte Änderung durch den Einbau von Oxidationskatalysatoren in BHKW 1 bis 3, Anzeigebestätigung vom 09.03.2018, Az: 41-1711.3/2-G4. A1.ÄB2, genehmigt werden. Durch die Änderung erhöht sich die Gesamt-Feuerungswärmeleistung der Verbrennungsmotor-anlage von bislang max. 2,549 MW auf zukünftig max. 4,410 MW, die erzeugte Gasmenge bleibt gleich bei max. 2.424.000 Nm³/a.
8 - Chemische Erzeugnisse 81 Chemische Grundstoffe (ausgenommen Aluminiumoxid und - hydroxid) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 811 Schwefelsäure 8110 Schwefelsäure (Oleum), Abfallschwefelsäure X X S 812 Ätznatron 8120 Ätznatron (Natriumhydroxid, fest), Ätznatronlauge (Natriumhydroxid) in Lösung, Natronlauge, Sodalauge A 813 Natriumcarbonat 8130 Natriumcarbonat (kohlensaures Natrium), Natron, Soda A 814 Calciumcarbid 8140 Calciumcarbid (Vorsicht: Bei Kontakt mit Wasser Explosionsgefahr!) X X S 819 Sonstige chemische Grundstoffe (ausgenommen Aluminiumoxid und -hydroxid) 8191 Acrylnitril, Alaune, Aluminiumfluorid, Äthylenoxid, verflüssigt, Bariumcarbonat, Bariumchlorid (Chlorbarium), Bariumnitrat, Bariumnitrit, Bariumsulfat, Bariumsulfid, Benzolkohlenwasserstoffderivate ( z. B. Äthylbenzol), Bleiglätte, Bleioxid, Bleiweiß (Bleicarbonat), Calciumhypochlorit (Chlorkalk), Caprolactam, Chlor, verflüssigt (Chlorlauge), Chlorbenzol, Chloressigsäure, Chlorkohlenwasserstoffe, nicht spezifiziert, Chlormethylglykol, Chloroform (Trichlormethan), Chlorothene, Chlorparaffin, Chromalaun, Chromlauge, Chromsulfat, Cumol, Cyanide (Cyansalz), Dimethyläther (Methyläther), Dichloräthylen, EDTA (Ethylendiamintetraessigsäure), ETBE (Ethyl-tertButylether), Flusssäure, Glykole, nicht spezifiziert, Hexachloräthan, Hexamethylendiamin, Kaliumchlorat, Kaliumhypochloritlauge (Kalibleichlauge), Kaliumsilikat (Wasserglas), Kalkstickstoff (Calciumcyanamid), Kohlensäure, verdichtet, verflüssigt, Kresol, Mangansulfat, Melamin, Methylchlorid (Chlormethyl), Methylenchlorid, Monochlorbenzol, MTBE (Methyl-tertButylether), Natriumchlorat, Natriumfluorid, Natriumnitrit (salpetrigsaures Natrium), Natriumnitritlauge, Natriumsilikat (Wasserglas), Natriumsulfid (Schwefelnatrium), Natriumsulfit (schwefligsaures Natrium), Natronbleichlauge, NTA (Nitrilotriessigsäure), Perchloräthylen, Phenol, Phosphorsäure, Phtalsäureanhydrid, Retortenkohle, Ruß, Salpetersäure, -abfallsäure, Salzsäure, -abfallsäure, Schwefel, gereinigt, Schwefeldioxid, schwefelige Säure, Schwefelkohlenstoff, Styrol, Surfynol ( TMDD = 2,4,7,9-Tetramethyldec-5-in-4,7-diol), Tallöl, Tallölerzeugnisse, Terpentinöl, Tetrachlorbenzol, Tetrachlorkohlenstoff, Trichloräthylen, Trichlorbenzol, Triphenylphosphin, Vinylchlorid, Waschrohstoffe, Zinkoxid, Zinksulfat X X S 8192 Aceton, Adipinsäure, Alkohol, rein (Weingeist), Aluminiumacetat (essigsaure Tonerde), Aluminiumformiat (ameisensaure Tonerde), Aluminiumsulfat (schwefelsaure Tonerde), Ameisensäure, Ammoniakgas (Salmiakgeist), Ammoniumchlorid (Salmiak), Ammonsalpeter (Ammoniumnitrat, salpetersaures Ammoniak), Ammoniumphosphat, Ammoniumphosphatlösung, Äthylacetat, Ätzkali (Kaliumhydroxid, Kalilauge), Branntwein (Spiritus), vergällt, Butanol, Butylacetat, Calciumchlorid (Chlorcalcium), Calciumformiat (ameisensaurer Kalk), Calciumnitrat (Kalksalpeter), Calciumphosphat, Calciumsulfat (Anhydrit, synthetisch), Citronensäure, Eisenoxid, Eisensulfat, Essigsäure, Essigsäureanhydrid, Fettalkohole, Glykole (Äthylenglykol, Butylenglykol, Propylenglykol), Glyzerin, Glyzerinlaugen, Glyzerinwasser, Harnstoff, künstlich (Carbamid), Holzessig, Isopropylalkohol (Isopropanol), Kaliumcarbonat (Pottasche), Kaliumnitrat, Kaliumsulfatlauge, Magnesiumcarbonat, Magnesiumsulfat (Bittersalz), Methanol (Holzgeist, Methylalkohol), Methylacetat, Natriumacetat, (essigsaures Natrium), Natriumbicarbonat (doppelkohlensaures Natrium), Natriumbisulfat (doppelschwefelsaures Natrium), Natriumformiat, Natriumnitrat (Natronsalpeter), Natriumphosphat, Propylacetat, Titandioxid (z. B. künstliches Rutil) X A 8193 Graphit, Graphitwaren, Silicium, Siliciumcarbid (Carborundum) A 8199 Sonstige chemische Grundstoffe und Gemische, nicht spezifiziert X X S 82 Aluminiumoxid und -hydroxid Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 820 Aluminiumoxid und -hydroxid 8201 Aluminiumoxid A 8202 Aluminiumhydroxid (Tonerdehydrat) A 83 Benzol, Teere u. ä. Destillationserzeugnisse Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 831 Benzol 8310 Benzol X X S 839 Peche, Teere, Teeröle u. ä. Destillationserzeugnisse 8391 Nitrobenzol, Benzolerzeugnisse, nicht spezifiziert X X S 8392 Öle und andere Erzeugnisse von Steinkohlenteer, z. B. Anthracen, Anthracenschlamm, Decalin, Naphthalin, raffiniert, Tetralin, Xylenol, Solventnaphtha, Toluol, Xylol (Ortho-, Meta- und Paraxylol und Mischungen davon) X X S 8393 Pech und Teerpech aus Steinkohlen- und anderen Mineralteeren, z. B. Braunkohlenteerpech, Holzteerpech, Mineralteerpech, Petroleumpech, Steinkohlenteerpech, Teerpech, Torfpech, Torfteerpech, Kreosot X X S 8394 Pech- und Teerkoks aus Steinkohlen- und anderen Mineralteeren, z. B. Braunkohlenteerkoks, Steinkohlenpechkoks, Steinkohlenteerkoks, Teerkoks X X S 8395 Gasreinigungsmasse X X S 8396 Steinkohlen-, Braunkohlen- und Torfteer, Holzteer, Holzteeröl, z. B. Imprägnieröl, Karbolineum, Kreosotöl, Mineralteer, Naphthalin, roh X X S 8399 Sonstige Destillationserzeugnisse, z. B. Rückstände von Braunkohlen- und Steinkohlenteerschweröl X X S 84 Zellstoff und Altpapier Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 841 Holzschliff und Zellstoff 8410 Holzstoff (Holzschliff), Holzzellulose, Zellulose, -abfälle X A 842 Altpapier und Papierabfälle 8420 Altpapier, Altpappe X A 89 Sonstige chemische Erzeugnisse ( einschl. Stärke) Güter- nummer Güterart Ein- leitung in das Gewässer Abgabe an Annahmestellen zur Kanalisation Abgabe an Annahmestellen zur Sonderbehandlung Bemerkungen 891 Kunststoffe 8910 Kunstharze, Kunstharzleim, Mischpolimerisat aus Acrylnitril, aus Butadien, aus Styrol, Polyester, Polyvinylacetat, Polyvinylchlorid X X S 8911 Kunststoffabfälle, Kunststoffrohstoffe, nicht spezifiziert X X S 892 Farbstoffe, Farben und Gerbstoffe 8921 Farbstoffe, Farben, Lacke, z. B. Eisenoxid zur Herstellung von Farben, Emailmasse, Erdfarben, zubereitet, Lithopone, Mennige, Zinkoxid X X S 8922 Kitte X X S 8923 Gerbstoffe, Gerbstoffauszüge, Gerbstoffextrakte X X S 893 Pharmazeutische Erzeugnisse, ätherische Öle, Reinigungs- und Körperpflegemittel 8930 Apothekerwaren (Arzneimittel), pharmazeutische Erzeugnisse X X S 8931 Kosmetische Erzeugnisse, Reinigungsmittel, Seife, Waschmittel, Waschpulver X A 894 Munition und Sprengstoffe 8940 Munition und Sprengstoffe X X S 896 Sonstige chemische Erzeugnisse 8961 Abfälle von Chemiefäden, -fasern, -garnen, von Kunststoffen, auch geschäumt, auch thermoplastisch, nicht spezifiziert, Abfallmischsäuren aus Schwefel- und Salpetersäure, Elektrodenkohlenabfälle, -reste, Kohlenstoffstampfmasse X X S 8962 Abfälle und Rückstände der chemischen Industrie, der Glasindustrie, eisenoxidhaltig, Sulfitablauge X X S 8963 Sonstige chemische Grundstoffe, Härtemittel für Eisen, für Stahl, Entkalkungsmittel für die Lederbereitung, Härtergemische für Kunststoffe, Kabelwachs, Leime, Lösungsmittel, Pflanzenschutzmittel, nicht spezifiziert, radioaktive Stoffe, nicht spezifiziert, Weichmachergemische für Kunststoffe X X S 8969 Chemikalien, chemische Erzeugnisse, nicht spezifiziert X X S Stand: 01. Januar 2018
Das Projekt "Sub project: Electron transfer reactions at iron mineral surfaces in the presence of organic sorbates" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Zentrum für Angewandte Geowissenschaften - Umweltmineralogie und Umweltchemie durchgeführt. Redox reactions at iron mineral surfaces play an important role in determining the overall biogeochemical milieu in anoxic groundwater systems. Previous studies have shown that oxidation of sorbed ferrous iron at mineral phases may cause remodelling of the mineralwater interphase and thus may affect electron transfer processes in anoxic aquifers. In the first funding period, we studied in detail how and at which conditions oxidation of ferrous iron at mineral surfaces affects electron transfer processes. Using carbon tetrachloride (CCl4) as model oxidant, we could further demonstrate, that the proposed reactive tracer approach, which is based on changes of the stable isotopic composition of model oxidants, could be successfully applied to characterize the surface reactivity and dynamics of surface bound Fe(II) species at iron(III)hydroxides. Up to date, process based studies on surface mediated transformation of redox active solutes in iron mineral systems have been conducted primarily in model systems devoid of natural organic matter. In natural systems, however, mineral surfaces are inevitably in contact with OM. Sorbed DOM is likely to affect heterogeneous electron transfer processes due to its interactions with iron both in aqueous solution and at the mineral surface. On one hand, DOM sorption at iron hydroxides may interfere with the formation of reactive Fe(II) surface sites. On the other hand, DOM contain redox active quinone moieties and may act as a mediator enhancing the electron-transfer across the mineral surface. In this follow-up project we propose to investigate the effects of various organic sorbates such as redox-inert organic acids as well as redox-active quinones, humic substances and DOM on electron transfer reactions at iron mineral surfaces. Furthermore, we will investigate the effects of sulfide as additional redox active natural component on DOM-iron interfacial redox processes.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung (INE) durchgeführt. Ziel des Vorhabens ist es einen Beitrag zur sicheren Endlagerung hochradioaktiven Abfalls zu leisten. In diesem Kontext wollen wir ein auf atomarer Skala basierendes Prozessverständnis der Wechselwirkung von Actiniden und Spaltprodukten mit endlagerrelevanten Mineralen bzw. Mineraloberflächen erlangen, um so Retentionsmechanismen auf langen Zeitskalen zu verstehen. Dazu sind innerhalb des Gesamtprojekts folgende Arbeitspakete vorgesehen: a) Dreiwertige Actinide Pu, Am, Cm (Phosphate, Carbonate, Eisen(hydr)oxide) b) Vierwertige Actiniden Th, U, Np, Pu (Silicate, Sulfate, Carbonate, Phosphate, Sulfide, Eisen(hydr)oxide, LDH-Phasen) a) Cm(III), Am(III) und Eu(III) dotierte Calcite werden synthetisiert und die Besetzung der unterschiedlichen 'sites' wird mit Hilfe der TRLFS quantifiziert. Die maximale Beladung der Sekundärphase mit Actiniden wird aus diesen Daten extrapoliert werden. Mit dreiwertigen Actiniden und Lanthaniden dotierte Calcit Einkristalle werden nach ihrer Synthese an der Beamline in Argonne untersucht. Mit diesen Röntgenreflektometriemessungen wird die Struktur der Oberfläche der Calcitkristalle bestimmt. b) Th(IV) und Np(IV) dotierte Calcite werden im MFR synthetisiert. Einbau sowie Freisetzung der Actiniden wird quantifiziert und modelliert. Der Einfluss von Fremdionen auf die Bildung der An(IV):Calcit 'solid solutions' wird mit Hilfe von SEM und AFM untersucht. Durch XAS werden die Strukturparameter der Einbauspezies bestimmt.
Origin | Count |
---|---|
Bund | 81 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 74 |
Text | 2 |
Umweltprüfung | 1 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 7 |
offen | 75 |
Language | Count |
---|---|
Deutsch | 77 |
Englisch | 13 |
Resource type | Count |
---|---|
Dokument | 1 |
Keine | 53 |
Webseite | 28 |
Topic | Count |
---|---|
Boden | 59 |
Lebewesen & Lebensräume | 67 |
Luft | 47 |
Mensch & Umwelt | 82 |
Wasser | 76 |
Weitere | 81 |