API src

Found 4301 results.

Similar terms

s/elektriziät/Elektrizität/gi

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

FP4-NNE-THERMIE C, Variable speed technology for low heat hydropower systems

Objective: Aim is to modify two small hydropower plants to variable speed operation in order to increase annual energy output by improved part load efficiency and design flow. A 100 kW vertical axis Francis turbine (Kaltenburg, DE) and a new 18 kW waterwheel (Bettborn, LU) will be modified to variable speed operation by use of a AC-AC converter. There will be installed a movable free-overfall weir at the waterwheel. By an expected increase of the electricity production in the range of 10 to 20 per cent , the aim is to proof viability of improving existing low head hydro sites with this technology. Especially low head sites have high variation of head and flow. Variable speed technology allows the system to operate at maximum efficiency for a wide range of hydraulic conditions. Modern power electronics replaces complex mechanical control systems with a high need for maintenance. In wind energy, variable speed technology has already proven its advantages compared to other mechanical technologies. General Information: Unlike earlier approaches with a combination of double regulated turbines and variable speed in a new installation, in this project the combination of a Francis turbine (respectively a water wheel) in existing plants together with a frequency converter will be used to increase part load efficiency and design flow of the system. Only the new IGBT controlled converters which are now used in wind energy as well as in motive power industry appliances can guarantee a reliable variable speed operation of a normal asynchronous generator. The combination of the movable weir and variable speed operation of the water wheel will allow to optimise the power output of the plant under all conditions. The use of an IGBT converter makes it possible to compensate reactive power to improve the mains performance. Due to detailed theoretical analysis and according to the positive experience with variable speed operation in wind energy and motive power technology, the expected increase of the annual power output of the two plants is in the range of 10 to 20 per cent of the actual value. This will reduce the specific cost of the electricity by the same range. For the actual payback tariffs of many European countries, this will increase the number of feasible low head sites. The top water level control by variation of turbine speed (and so flow) will be demonstrated to show a simple, reliable and energy saving alternative to the old hydraulic systems, which are still installed in many sites. The success of the variable speed system in this plants will open a big European SME market for cheap technological improvement of small hydropower plants and low head sites. The monitored performance of the plants data will be stored in a data logger with a modem, to allow automatic down-loading from a server-PC via modem. ... Prime Contractor: Universität Kassel, Fachbereich Elektrotechnik/Informatik, Institut für Elektrische Energietechnik - IEE; Kassel; Germany.

Branchenabhängiger Energieverbrauch des verarbeitenden Gewerbes

<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>⁠. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>

Energiewende in der Metropolregion Nürnberg, Teilvorhaben E: Modellierung und Simulation der Mobilität und deren Potenziale für die Energiewende in der Metropolregion

Nutzung von Wasserstoff als Energieträger in der Produktionskette Milchvieh zur Minderung von Treibhausgasemissionen, Teilprojekt B

Nutzung von Wasserstoff als Energieträger in der Produktionskette Milchvieh zur Minderung von Treibhausgasemissionen, Teilprojekt C

Analyse von Bietstrategien und deren Einfluss auf den Strompreis im EU-Binnenmarkt, Teilvorhaben: Analyse von historischen Bietstrategien, Implementierung via P'n'P-Agenten in das Strommarktmodell PowerACE und Analyse für zukünftige Szenarien

Die Stromerzeuger bieten an der Strombörse einen Erzeugungspreis an, der die variablen Kosten des Kraftwerksbetriebs widerspiegelt. Anhand dieser Grenzkosten wird nach dem Merit-Order Prinzip schließlich der Strompreis ermittelt. Es ist jedoch zu hinterfragen, ob das Bieten nach Grenzkosten heute wie auch in einem zukünftig deutlich heterogener aufgestellten Kraftwerksportfolio, das an der Börse Handel treibt, weiterhin Bestand hat. So verändert die aktuelle Situation an den Energiemärkten durch die unvorhergesehenen starken Preisanstiege der Rohstoffe das gewohnte Handelsbild, denn bei einem gleichgebliebenen Kraftwerkspark sind die Beschaffungskosten bspw. für Gaskraftwerke überproportional gestiegen. Auch der europaweite Ausbau der erneuerbaren Energien kann Einfluss auf das Bietverhalten der Marktteilnehmer haben. Da die Grenzkosten der erneuerbaren Energien Anlagen nahezu null sind, kann deren zunehmender Handel an den Märkten zu großen Differenzen zwischen den Grenzkosten der bietenden Kraftwerke führen. Gleichzeitig können besonders die zu erwartenden Volatilitäten bei der Erzeugung aus erneuerbaren Energien zu sehr geringen Strompreisen führen und damit Refinanzierungen erschweren. Zusätzlich verbindet die europäische Marktkopplung unterschiedliche Erzeugungsparks miteinander und verändert damit ebenfalls die bestehenden Märkte und deren Handelseigenschaften. So kann es finanziell attraktiv erscheinen, einen Aufschlag auf die Grenzkosten oder eine strategisch platzierte Stromnachfrage zu nutzen. Im Rahmen des Vorhabens sollen daher die an der EPEX SPOT vorhandenen Gebotsdaten in den Preiskurven auf strategische Muster hin analysiert werden. Gefundene Strategien werden in einem zweiten Schritt in die Zukunft getestet. Dazu wird deren Einfluss auf den Strompreis und Investitionen in flexible Erzeugungstechnologien in Deutschland unter Berücksichtigung der in Zukunft stark unterschiedlichen nationalen Stromerzeugungssysteme in Europa untersucht.

Analyse von Bietstrategien und deren Einfluss auf den Strompreis im EU-Binnenmarkt, Teilvorhaben: Herleitung von Bietstrategien sowie Entwicklung eines strategisch Handelnden P'n'P Agenten und Evaluierung von Bietstrategien in zukünftigen Szenarios

Die Stromerzeuger bieten an der Strombörse einen Erzeugungspreis an, der die variablen Kosten des Kraftwerksbetriebs widerspiegelt. Anhand dieser Grenzkosten wird nach dem Merit-Order Prinzip schließlich der Strompreis ermittelt. Es ist jedoch zu hinterfragen, ob das Bieten nach Grenzkosten heute wie auch in einem zukünftig deutlich heterogener aufgestellten Kraftwerksportfolio, das an der Börse Handel treibt, weiterhin Bestand hat. So verändert die aktuelle Situation an den Energiemärkten durch die unvorhergesehenen starken Preisanstiege der Rohstoffe das gewohnte Handelsbild, denn bei einem gleichgebliebenen Kraftwerkspark sind die Beschaffungskosten bspw. für Gaskraftwerke überproportional gestiegen. Auch der europaweite Ausbau der erneuerbaren Energien kann Einfluss auf das Bietverhalten der Marktteilnehmer haben. Da die Grenzkosten der erneuerbaren Energien Anlagen nahezu null sind, kann deren zunehmender Handel an den Märkten zu großen Differenzen zwischen den Grenzkosten der bietenden Kraftwerke führen. Gleichzeitig können besonders die zu erwartenden Volatilitäten bei der Erzeugung aus erneuerbaren Energien zu sehr geringen Strompreisen führen und damit Refinanzierungen erschweren. Zusätzlich verbindet die europäische Marktkopplung unterschiedliche Erzeugungsparks miteinander und verändert damit ebenfalls die bestehenden Märkte und deren Handelseigenschaften. So kann es finanziell attraktiv erscheinen, einen Aufschlag auf die Grenzkosten oder eine strategisch platzierte Stromnachfrage zu nutzen. Im Rahmen des Vorhabens sollen daher die an der EPEX SPOT vorhandenen Gebotsdaten in den Preiskurven auf strategische Muster hin analysiert werden. Gefundene Strategien werden in einem zweiten Schritt in die Zukunft getestet. Dazu wird deren Einfluss auf den Strompreis und Investitionen in flexible Erzeugungstechnologien in Deutschland unter Berücksichtigung der in Zukunft stark unterschiedlichen nationalen Stromerzeugungssysteme in Europa untersucht.

Plasmabasierte Herstellung von grünem Kerosin aus Biogas und regenerativer elektrischer Energie, Plasmabasierte Herstellung von grünem Kerosin aus Biogas und regenerativer elektrischer Energie (PlasmaFly)

Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung, SynErgie3: Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung

1 2 3 4 5429 430 431