Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.
Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.
Organische Radikalbatterien sind aufgrund ihrer hohen Leistungsdichte besonders vielversprechend. Aus grundlegende Sicht müssen eine günstige Ladungstransferkinetik und ein schneller Ladungstransport gleichzeitig ermöglicht werden. Darüber hinaus erfordert die Ladungsspeicherung eine aliovalente Dotierung, um die Ladungsneutralität zu gewährleisten. Die zugrunde liegenden Mechanismen auf atomarer Ebene sind jedoch nicht gut verstanden. Dies gilt insbesondere für die 'trockenen' Gel- oder 'festen' Polymer-MehrschichtElektrolyte, die aufgrund ihrer hohen elektrochemischen Stabilität derzeit die bevorzugten Materialien sind. In einem systematischen Ansatz wird eine Familie von Mehrschichtpolymersystemen vorbereitet und in Bezug auf PolyTEMPO, ein etabliertes Redoxpolymersystem für Flüssigelektrolyte, untersucht. Die Modellsysteme bestehen aus einer Lithium-Metall-Anode, einer hochlithiumionenleitenden Polymerelektrolytschicht und gemischt leitenden Polymerverbunden, einschließlich Elektronenleiter, Redox-Polymer und einem hoch anionenleitenden Polymer. Der Syntheseteil umfasst die Herstellung und Verarbeitung der Polymermaterialien zu lamellaren Verbundwerkstoffen sowie eine umfassende elektrochemische Charakterisierung.Details der Radikal-Transfermechanismen und der auftretenden Ionenspezies werden anhand von c.w. und gepulsten EPR-Methoden aufgeklärt, wobei spektrale Merkmale von reinen und zyklischen Materialien (post-mortem) verglichen und bestimmt werden, einschließlich der Anwendung von PELDOR/DEER zur Aufklärung der Abstände und wahrscheinlichen Verteilungen der beim Zellbetrieb gebildeten Radikalspezies, trotz schwieriger hoher lokaler Radikalkonzentrationen. Wenn möglich, soll mittels ENDOR / HYSCORE die radikalen Arten mit den Materialien weiter charakterisiert werden. In-operando EPR wird an ausgewählten Proben durchgeführt, um die Entwicklung der radikalen Spezies anhand ihres Fingerabdrucksignals zu verfolgen und Einblicke in molekulare Details der Ladungsübertragungsprozesse zu geben. Weitere Einblicke in die mechanistischen Details des elektronischen und ionischen Ladungstransports werden durch die rechnerische Modellierung relevanter Prozesse vom elementaren Elektronentransfer bis zum Ionentransport über die Grenzflächen innerhalb des Schichtverbundes ermöglicht. Ab initio-Methoden werden zur Charakterisierung der elektronischen Eigenschaften der redoxaktiven Polymere eingesetzt, während die weitreichenden Ionentransport- und Dotierungsmechanismen der organischen Kathode auf der Grundlage klassischer molekulardynamischer Simulationen entschlüsselt werden. Zusammenfassend lässt sich sagen, dass all diese Bemühungen neben einem tieferen grundlegenden Verständnis als Leitfaden für die Identifizierung vielversprechender redoxaktiver Materialien und die Gestaltung von Grenzflächen innerhalb der Mehrschichtstrukturen dienen werden, um so die zukünftige Entwicklung leistungsfähiger fester organischer Elektrolyte zu fördern.
Ziel des Projektes ist die Untersuchung der Elektrochemie fester polymerer anorganischer Cyanide, z.B. des Berliner Blaus und analoger Verbindungen. Dabei wird insbesondere die Interkalation von Metallionen waehrend der Elektrochemie studiert. Die Untersuchungen versprechen Informationen zum Ablauf festkoerperelektrochemischer Reaktionen und chemischer Reaktionen, die damit gekoppelt sind.
1
2
3
4
5
…
128
129
130