API src

Found 1397 results.

H2Giga: Technologieentwicklung für eine Wasserelektrolyse im Gigawatt-Maßstab, Durchführung, Auswertung und Post-Test-Analysen von Langzeittests an Zellen und Short Stacks der Hochtemperaturelektrolyse (HTEL) im Rahmen des Degrad-EL3-Vorhabens.

H2Organic - Innovative Materialien für die Elektrokatalytische Hydrierung von Organischen Substraten

Elektrokatalysatoren fuer Membranbrennstoffzellen

a) Herstellung und Optimierung von Elektrode-Membran-Verbuenden fuer die Membranbrennstoffzelle. Es wurde ein Spruehverfahren zur Herstellung von Elektrode-Membran-Verbuenden entwickelt. b) Optimierung der Elektrodenstruktur der Kathode fuer den Betrieb mit Luft bei 1 bar. c) Entwicklung und Charakterisierung von ternaeren Katalysatoren fuer die Direkt-Methanol-Brennstoffzelle auf der Basis Pt/Ru. d) Herstellung von verbesserten makroporoesen Luftelektroden.

Entwicklung von Mikrosensoren zur impedanzspektroskopischen Untersuchung der Kambialaktivität von Fichte (Picea abies)

Im beantragten Forschungsprojekt werden Mikrosensoren entwickelt, die geeignet sind, die Wachstumsaktivität in der Kambialregion lebender Bäume auf dem Niveau wenige Zellen umfassender Gewebeverbände direkt, zeitnah und zerstörungsarm zu erfassen. Das Sensorkonzept basiert auf Methoden der Impedanzspektroskopie, einem in der Biologie etablierten Analyseverfahren, mit dem der frequenzabhängige komplexe Wechselstromwiderstand des Gewebes bestimmt wird. Die charakteristischen elektrischen Parameter gehen in die Modellierung eines Ersatzschaltbildes en, womit sich der aktuelle Zustand des Gewebes mit seinen resistiven und kapazitiven Eigenschaften darstellen und beschreiben lässt. Die Elektroden werden so dimensioniert, dass die aktive Kambialregion (Kambium mit lebendem Phloem und Xylem) möglichst exakt erfasst wird und charakteristische, gewebespezifische Zeitkonstanten bestimmt werden können. Damit können die Zellteilungs- und Ausdifferenzierungsvorgänge während der Wachstumsphase kontinuierlich und zeitlich hochaufgelöst beobachtet werden. Die Entwicklung dieser Messmethodik ist die Grundlage für die später angestrebte Anwendung im Umweltmonitoring und wird die Kenntnisse über die Steuerung der Wuchsreaktionen von Waldbäumen auf Umwelteinflüsse deutlich erweitern.

Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung

Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.

Spaltung von Wasser in H2 und O2 mittels Sonnenenergie und Photokatalysatoren

Untersuchung von photoelektrochemischen Systemen am Beispiel von n-TiO2-Halbleiterelektroden. Zusammenhang zwischen photophysikalischen, elektrochemischen und halbleiterphysikalischen Daten von unterschiedlich hergestellten polikristallinen TiO2-Schichten. Vergleich thermisch oxidierter, anodisch oxidierter und vakuum-aufgedampfter Halbleiter. Messung ihrer Stabilitaet und der Photoeffizienz. Untersuchung von Farbstoffen hinsichtlich Stabilitaet gegenueber Angriff von H- und OH-Radikalen, die bei der photokatalytischen H2O-Spaltung entstehen. Untersuchung von Methylenblau, Thionin, Acridinorange, Rhuteniumpyridil, Prophyrine etc. TiO2-Suspensionen als Photokatalysator fuer O2-Entwicklung aus sauren und Ce4+-haltigen waessrigen Systemen. Farbstoffsensibilisierung an Halbleiterelektroden: Farbstoffe im Elektrolyten oder adsorbiert an der Halbleiteroberflaeche.

Innovatives Brennstoffzellen-System zur Versorgung von Haushalten mit Wärme und Strom aus Methanol anstelle von Erdgas, Teilvorhaben: Entwicklung und Erprobung einer Methanol-Brennstoffzellen-Heizanlage

H2Giga: HTEL-Stacks Ready for Gigawatt, Teilvorhaben: Fortgeschrittene Materialien und Grenzflächen für die Hochtemperatur-Elektrolyse

Fluorfreie Membran-Elektroden-Einheiten mit hoher Effizienz, geringerem Gasübertritt und langer Lebensdauer zur nachhaltigen Erzeugung von Wasserstoff, Teilvorhaben: Entwicklung einer Nanofaserverstärkung und elektrochemische Charakterisierung

Elektrochemische CO2-Nutzung zu Ameisensäure, Teilvorhaben: Entwicklung von nano-Bismutoxid-Katalysatoren im Labormaßstab und Machbarkeitsanalyse zum Upscaling der Synthese

1 2 3 4 5138 139 140