API src

Found 4070 results.

Similar terms

s/elektromobiltät/Elektromobilität/gi

Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität

Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität Projektleitung: Dr.-Ing. Gernot Schmid, Seibersdorf Labor GmbH Beginn: 18.03.2021 Ende: 11.11.2025 Finanzierung: 449.025 Euro Hintergrund Elektromobilität gilt als Schlüssel für eine klimafreundliche Mobilität. Elektroantriebe arbeiten weitgehend schadstoffemissionsfrei. Betriebsbedingt entstehen allerdings Magnetfelder, die von dem elektrifizierten Antriebsstrang eines Elektrofahrzeugs ausgehen und auf Fahrer*in und Passagier*innen einwirken. Expositionen ( d.h. Situationen, in denen Personen solchen Feldern ausgesetzt sind) in relevanten Größenordnungen können dabei nicht von Vornherein ausgeschlossen werden. Gründe sind der geringe Abstand der Sitze zu den Komponenten, die Magnetfelder erzeugen, und die hohen Stromstärken in leistungsstarken Fahrzeugen. Darüber hinaus können bei rein batterieelektrischen Fahrzeugen (BEV) und bei Plug-In-Hybriden (PHEV) Expositionen bei Fahrzeugstillstand während des Ladevorgangs auftreten. Magnetfeldquellen sind dann zum Beispiel die Ladeeinrichtung selbst, das Ladekabel im Fall konduktiven Ladens, als Gleichrichter arbeitende Leistungselektronik sowie die Leitungen im Fahrzeug und die Fahrzeugbatterie. Magnetfeldquellen nur in Elektroautos und Hybriden Zielsetzung In dem Vorhaben wurde die Exposition von Personen gegenüber elektromagnetischen Feldern der Elektromobilität bestimmt. Einbezogen wurden Expositionsbeiträge durch den Fahrzeugfahrbetrieb und durch Batterieladevorgänge bei Fahrzeugstillstand. Die Studie ist aussagekräftig für Elektroautos und Elektro-Zweiräder ( d.h. ein- und zweispurige Personenkraftfahrzeuge). Als Fahrräder eingestufte Elektrofahrzeuge ( sog. E-Bikes) waren ausgenommen. Die Ergebnisse können mit Werten einer im Jahr 2009 abgeschlossenen Studie des BfS und mit in der Literatur veröffentlichten Werten verglichen werden. Zudem geben die Ergebnisse Hinweise für die Standardisierung. Durchführung Untersucht wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle von verschiedenen Herstellern. Dazu wurden Magnetfeldmessungen an mehreren Stellen im Fahrgastraum der Elektroautos und an den Sitzpositionen der Elektro-Zweiräder ( d.h. Elektroroller bzw. -motorräder) durchgeführt, während sich die Fahrzeuge auf einem Rollenprüfstand und in vorab festgelegten Betriebszuständen befanden. Die Betriebszustände umfassten das Beschleunigen, das Bremsen sowie das Fahren mit konstanten Geschwindigkeiten gegen verschiedene Lastmomente, um Luftwiderstände, Streckensteigungen und -gefälle zu simulieren. Anschließend wurden Magnetfeldmessdaten während eines Worldwide Harmonized Light Vehicle Test Cycle (WLTC) aufgezeichnet. Dabei handelt es sich um einen ca. 30-minütigen genormten Fahrzyklus, der ursprünglich für vergleichbare Abgas- und Verbrauchsmessungen festgelegt wurde. Daten für Zweiräder wurden während eines World Motorcycle Test Cycle (WMTC) aufgezeichnet. Die auf dem Prüfstand ermittelten Daten wurden mit Messungen bei Fahrten auf einer abgesperrten, ebenen Teststrecke und bei einer etwa 90-minütigen Fahrt im öffentlichen Straßenverkehr validiert. Anschließend wurden die im Zeitbereich aufgezeichneten Messdaten entsprechend der spektralen Zusammensetzung analysiert und bewertet. Situationen, die basierend auf den Messungen die höchsten Expositionen erwarten ließen, wurden zusätzlich dosimetrisch analysiert. Die betreffenden Expositionssituationen wurden dazu in einer Simulationssoftware nachgebildet. Ziel war die rechentechnische Bestimmung, der im Körper einer exponierten Person hervorgerufenen elektrischen Feldstärken. Hierfür musste vorab die lokale Verteilung der Magnetfeldstärken in der Fahrgastzelle bzw. im Bereich der Sitze der Elektro-Zweiräder bekannt sein. Stellvertretend für die exponierten Personen wurden hochaufgelöste, digitale Menschmodelle eingesetzt, die anatomisch möglichst korrekt waren und Gewebetypen mit verschiedenen elektrischen Eigenschaften unterschieden. Die Untersuchungen zum Aufladen bei Fahrzeugstillstand berücksichtigten Positionen in und außerhalb der Fahrzeuge. Ebenso wurden die Untersuchungen an Normal- und Schnellladepunkten durchgeführt. Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Ergebnisse Die Studie stellt nach Kenntnis des BfS die bislang detaillierteste Untersuchung zu Magnetfeldexpositionen in Elektrofahrzeugen dar. Die Messungen wurden in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugen unter realen Bedingungen im öffentlichen Straßenverkehr sowie auf Teststrecken und Prüfständen durchgeführt. Erstmals wurden auch Zweiräder einbezogen. Die Fahrzeughersteller waren nicht an den Untersuchungen beteiligt. Die Magnetfeldexposition innerhalb der Fahrzeuge war räumlich sehr ungleichmäßig. Hohe Werte traten im Fahrberieb vorrangig im Bereich der Beine auf, während der Oberkörper und der Kopf deutlich weniger exponiert waren. Die Exposition variierte je nach Fahrmanöver: Beim Beschleunigen und Bremsen waren die Werte höher als bei konstantem Fahren. Die maximale Motorleistung der Fahrzeuge hing nicht systematisch mit der Magnetfeldexposition zusammen. Langzeit-Effektivwerte aus Messungen während Fahrten im realen Straßenverkehr zeigten höhere Werte als die Daten, die während genormter Fahrzyklen auf einem Fahrzeugprüfstand ermittelt wurden. Alle Magnetfeldexpositionen wurde mit den Referenzwerten der EU -Ratsempfehlung und den ICNIRP -2010-Leitlinien verglichen. Bei sanfter Fahrweise lagen die Ausschöpfungen der EU -Referenzwerte meist im niedrigen zweistelligen Prozentbereich. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der EU -Referenzwerte. Bei Anwendung der moderneren ICNIRP -2010-Leitlinien ergab sich nur in einem Fall eine Überschreitung. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper induzierte elektrische Felder festgestellt. Die während des Ladens innerhalb der Fahrzeuge gemessenen magnetischen Flussdichten waren überwiegend niedriger als die während des Fahrens gemessenen Werte. Gleichstrom-Laden ( DC -Laden) führte, trotz höherer Ladeleistungen, zu geringeren Expositionen als Wechselstrom-Laden ( AC -Laden). Magnetische Flussdichten oberhalb der ICNIRP -Referenzwerte traten nur in unmittelbarer Nähe des Ladekabelsteckers bzw. der Fahrzeugbuchse ( bzw. beim induktiven Laden nahe dem Straßenniveau) unmittelbar neben dem Fahrzeug auf. Neben dem Antriebssystem erzeugen weitere Fahrzeugkomponenten Magnetfelder, z.B. die Sitzheizungen, Fensterheber oder Fahrzeugeinschaltung. In einigen Fällen waren diese Expositionen höher als die durch das Antriebssystem verursachten Felder. In vielen Fahrzeugen traten die höchsten Werte beim Einschalten oder Starten auf. Die mittleren Langzeitwerte in Elektroautos (0,5 bis 2,5 Mikrotesla/ µT ) entsprachen weitgehend denen in etablierten elektrisch angetriebenen Verkehrsmitteln wie Straßenbahnen oder U-Bahnen (2 bis 3 µT ). In doppelstöckigen Zügen wurden auf der oberen Fahrgastebene Werte bis zu 13 µT gemessen, also potenziell höhere Expositionen als in Elektroautos. Stand: 24.11.2025

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Optimierungmodell

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

Nachhaltige Schaltanlagen für das Mittelspannungsnetz, Teilvorhaben: Nachhaltige Materialien und Prozesse

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

Sichere und nachhaltige kunststoffbasierte Batteriegehäuse; Methodenentwicklung zur virtuellen Auslegung gegen Folgen des thermischen Durchgehens

Bisher wird die Sicherheit von Batteriegehäusesystemen gegenüber thermischem Durchgehen und Propagation im Wesentlichen durch zeit- und kostenintensive, iterative Experimente während der Produktentwicklungsphase überprüft. Nach aktuellem Stand der Technik werden überwiegend metallische Werkstoffe für Batteriegehäuse verwendet. Konzepte für leichtere und nachhaltigere Batteriegehäuse aus Kunststoffen stehen zwar zur Verfügung, der Nachweis der Sicherheit ist allerdings sehr aufwendig und teuer. Von einer stärkeren Integration von Simulationsmethoden wird eine deutliche Verbesserung des Entwicklungsprozesses erwartet. Ziel ist zukünftig die Sicherheit von kunststoffbasierten Batteriegehäusen bei geringeren Kosten und Entwicklungszeiten zu gewährleisten. Es käme dabei sowohl bei der Herstellung der Gehäuse als auch im Betrieb von Elektrofahrzeugen zu einer CO2-Einsparung. Das Projekt SiKuBa setzt bei der Entwicklung und Validierung von Simulationsmodellen zur Auslegung sicherer Kunststoff-Batteriegehäuse unter thermischem Durchgehen an. Die Entstehung und Ausbreitung der gefährlichen Gas- und Partikelströme sowie deren Interaktion mit Strukturelementen wird experimentell analysiert und in strömungs- und strukturmechanische Simulationsmodelle überführt. Die Modelle eröffnen eine effiziente Möglichkeit neuartige Konzepte zur Verlangsamung und Unterdrückung der Propagation virtuell zu untersuchen. Der somit mögliche Einsatz sicherer und nachhaltiger kunststoffbasierter Gehäuselösungen kann dabei einen wesentlichen Beitrag zur Akzeptanz der Elektromobilität leisten. Kautex fokussiert sich hauptsächlich auf die Entwicklung von Schutzkonzepten für den Lastfall des thermischen Durchgehens. Neben der Weiterentwicklung lokaler Schutzmaßnahmen werden neuartige Konzepte zur schnellen Abführung heißer Gase erarbeitet. Darüber hinaus ist Kautex für die Auslegung und Fertigung von Demonstratoren verantwortlich und wird die Simulationsarbeiten im Projekt unterstützen.

Nachhaltige Schaltanlagen für das Mittelspannungsnetz

Mit steigendem Anteil der erneuerbaren Energien und durch die Zunahme der Elektromobilität wird das Mittelspannungsnetz in Deutschland zunehmend belastet und muss dementsprechend ausgebaut werden. In diesem Kontext spielen Schaltanlagen als zentrales Element für die Energieverteilung und den Netzschutz eine entscheidende Rolle. Aufgrund der hohen Anforderungen an Zuverlässigkeit und mit einer Lebensdauer von mehr als 30 Jahren kann die Auslegung und das Design dieser Komponenten bisher als konservativ und vor allem Funktionsgetrieben angesehen werden; Aspekte der Nachhaltigkeit spielen abgesehen vom Ersatz von SF6 als Isoliergas bisher keine relevante Rolle. Ziel des Projects GreEner Tech ist es, Schaltanlagen im Mittelspannungsnetz grundlegend neu zu denken und nachhaltig zu gestalten. Dazu sollen unter anderem bessere und nachhaltigere Materialien gefunden, Konstruktionen verbessert und der Einsatz von Rohstoffen verringert werden. Insbesondere soll im Projekt ein neuer integrierter Ansatz gewählt werden, der das Design und die Materialauswahl mit wissenschaftlichen Methoden der Nachhaltigkeitsforschung verknüpft und den gesamten kooperativen Wissens- und Datengewinn in einer gemeinsamen digitalen Optimierungsplattform bündelt. So kann in Zusammenarbeit zwischen Industrie, Forschung und Netzbetreibern eine bessere Infrastruktur für das deutsche Mittelspannungsnetz entwickelt werden.

Entwicklung keramikähnlicher Leiterisolationen für den Einsatz in hochausgenutzten, ressourceneffizienten elektrischen Maschinen und Antrieben, Teilvorhaben: Skalierung der elektrochemischen Oxidation zur Herstellung von Isolationsschichen auf Leiterkomponenten elektrischer Maschinen

Gesellschaftliche Kosten von Umweltbelastungen

<p>Umweltbelastungen verursachen hohe Kosten für die Gesellschaft, etwa in Form von umweltbedingten Gesundheits- und Materialschäden, Ernteausfällen oder Schäden an Ökosystemen. Im Jahr 2022 betrugen die Umweltkosten in den Bereichen Straßenverkehr, Strom- und Wärmeerzeugung mindestens 301 Milliarden Euro. Eine ambitionierte Umweltpolitik senkt diese Kosten und entlastet damit die Gesellschaft.</p><p>Gesamtwirtschaftliche Bedeutung der Umweltkosten</p><p>Umweltkosten sind ökonomisch höchst relevant. Das zeigte bereits der sogenannte „Stern Report“ im Jahr 2006, der die allein durch den ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawandel#alphabar">Klimawandel</a>⁠ entstehenden Kosten auf jährlich bis zu 20 % des globalen Bruttoinlandprodukts bezifferte. Auch fünfzehn Jahre nach Erscheinen des „Stern Reviews“, bekräftigt der Ökonom Nicholas Stern, dass die Kosten des Nichthandelns die Kosten des Klimaschutzes um ein Vielfaches übersteigen und ruft erneut zu entschiedenem Handeln im Kampf gegen den Klimawandel auf (Stern 2006 und Stern 2021). Auch auf Deutschland bezogene Schätzungen zeigen die ökonomische Bedeutung allein der durch Luftschadstoffe und Treibhausgase entstehenden Kosten. So haben die deutschen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠- und Luftschadstoff-Emissionen in den Bereichen Straßenverkehr, Strom- und Wärmeerzeugung im Jahr 2022 Kosten in Höhe von mindestens 301 Milliarden Euro verursacht (siehe Abb. "Umweltkosten durch Treibhausgase und Luftschadstoffe für Strom-, Wärmeerzeugung und Straßenverkehr").</p><p>* Basierend auf Kaufkraft 2024<br> **Klimaschadenskosten ab 2020 basieren auf dem GIVE-Modell, Werte vor 2020 auf dem Vorgänger Modell FUND</p><p>Zeitreihen zur Entwicklung der Erneuerbaren Energien sowie Energiedaten, TREMOD 6.53</p><p>Umweltkosten der Strom- und Wärmeerzeugung</p><p>Bei der Strom- und Wärmeerzeugung entstehen hohe Umweltkosten. Sie unterscheiden sich in Abhängigkeit von den eingesetzten Energieträgern deutlich. Stromerzeugung mit Braunkohle verursacht die höchsten Umweltkosten, gefolgt von den fossilen Energieträgern Öl und Steinkohle. Bereits deutlich niedriger liegen die Umweltkosten der Stromerzeugung aus Erdgas. Am umweltfreundlichsten ist die Stromerzeugung aus erneuerbaren Energien (siehe Tab. „Umweltkosten der Stromerzeugung“).</p><p>Auch bei der Wärmeerzeugung ist der eingesetzte Energieträger ein maßgeblicher Faktor für die Höhe der entstehenden Umweltkosten (siehe Tab. „Umweltkosten der Wärmeerzeugung der privaten Haushalte“). Heizen mit Kohle und Strom verursacht mit Abstand die höchsten Umweltkosten. Schon mit deutlichem Abstand folgen die Fernwärmeversorgung und das Heizen mit Heizöl und Erdgas. Die Umweltkosten der erneuerbaren Energien zur Wärmeerzeugung liegen noch deutlich darunter. Dies zeigt, dass der Ausbau erneuerbarer Energien auf dem Wärmemarkt die entstehenden Umweltkosten deutlich verringert.</p><p>Die Kostensätze der Strom- und Wärmeerzeugung berücksichtigen dabei lediglich die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von Luftschadstoffen und Treibhausgasen, die Kosten infolge der Emission toxischer Stoffe (Quecksilber etc.) oder der Zerstörung von Ökosystemen infolge von Landnutzungsänderungen sind auf Grund fehlender Datenverfügbarkeit nicht eingeschlossen.</p><p>Umweltkosten des Verkehrs</p><p>Verkehr verursacht neben Emissionen von Luftschadstoffen und Treibhausgasen auch Lärmbelastung und negative Effekte auf Natur und Landschaft, beispielsweise durch die Zerschneidung der Landschaft. Um die Kostensätze für den Straßenverkehr in Deutschland zu bestimmen, werden zunächst die Emissionen aus dem Betrieb der verschiedenen Fahrzeugtypen ermittelt. Diese Emissionen entstehen bei der Verbrennung der Kraftstoffe sowie durch Reifenabrieb und Staubaufwirbelungen. Im Anschluss daran werden die indirekten Emissionen, d. h. Emissionen aus den anderen Phasen des Lebenszyklus geschätzt (zum Beispiel Herstellung, Wartung, Entsorgung sowie die Bereitstellung der Kraftstoffe). Während die meisten Emissionen der konventionellen Antriebe beim Fahren entstehen, sind bei der Elektromobilität die indirekten Emissionen bedeutender. Die Unterschiede zwischen den ermittelten Umweltkosten der einzelnen Verkehrsträger sind beträchtlich (siehe Tab. „Umweltkosten für verschiedene Fahrzeugtypen“).</p><p>Umwelt- und Gesundheitsschäden aus Luftschadstoffemissionen sind in Städten höher als in ländlichen Gebieten. Das zeigt der Vergleich der verkehrsbezogenen Kostensätze in Stadt und Land. Um diese Kostensätze – also die Kosten pro Personen- oder ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Tonnenkilometer#alphabar">Tonnenkilometer</a>⁠ – zu bestimmen, müssen die jeweiligen Emissionen pro Fahrzeugtyp und die Anteile von Fahrleistungen in städtischen und ländlichen Gebieten berücksichtigt werden. Die Unterschiede zwischen den Fahrzeugtypen sind zum Teil beträchtlich: So sind zum Beispiel Linienbusse zu rund 57 Prozent (%) in der Stadt unterwegs, Reisebusse hingegen nur zu 9 %.</p><p>Die Kostenschätzungen verdeutlichen beispielsweise die Vorteile eines Ausbaus des öffentlichen Personennahverkehrs: PKW mit einem Benzin-Motor verursachten 2024 Umweltkosten von 7,66 Eurocent pro ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Personenkilometer#alphabar">Personenkilometer</a>⁠ (Pkm), Nahverkehrszüge 4,88 Eurocent pro Pkm und Linienbusse nur 4,60 Eurocent pro Pkm.</p><p>Umweltkosten der Landwirtschaft</p><p>Ein weiteres wirtschaftliches Feld mit hohen Umweltwirkungen ist die Landwirtschaft. Durch die Produktion von Lebensmitteln und Energieträgern aber auch mit ihrem Potenzial, Kulturlandschaften zu prägen und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>⁠ zu erhalten, erfüllt die Landwirtschaft wichtige Funktionen für die Gesellschaft. Demgegenüber stehen aber auch zentrale negative Umweltwirkungen der Landwirtschaft. Zu diesen gehören neben Landnutzungsänderungen und der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von Treibhausgasen auch die Emission von Stickstoff und Phosphor. Der Kostensatz für die Ausbringung eines Kilogramms (kg) Phosphor beträgt dabei 5,33 Euro2024. Bei der Ausbringung von Stickstoff fallen Umweltkosten in Höhe von durchschnittlich 11,23 Euro2024 pro kg an.</p><p>Wozu dienen Umweltkostenschätzungen?</p><p>Schätzungen von Umweltkosten sind vielseitig nutzbar. Sie zeigen, wie teuer unterlassener Umweltschutz ist und untermauern die ökonomische Notwendigkeit anspruchsvoller Umweltziele. Mit ihrer Hilfe lassen sich auch die Kosten und Nutzen von umwelt- und klimapolitischen Maßnahmen besser ermitteln. Dies gilt beispielsweise für die Bewertung von Maßnahmen zum Ausbau Erneuerbarer Energien oder zum Schutz von Ökosystemen, die einen beträchtlichen Nutzen in Form von vermiedenen Umwelt- und Gesundheitsschäden haben.</p><p>Die Schätzung von Umweltkosten ist auch bei Entscheidungen über den Ausbau der Infrastruktur wichtig, etwa bei der Erstellung des Bundesverkehrswegeplans, in den Umweltkostenschätzungen bereits einfließen. Ohne Berücksichtigung der Umweltkosten würden Investitionen in umweltfreundliche Verkehrssysteme systematisch benachteiligt und das Verkehrsnetz stärker ausgebaut, als dies gesamtwirtschaftlich sinnvoll wäre. Darüber hinaus können Umweltkostenschätzungen auch im Rahmen der Gesetzesfolgenabschätzung wertvolle Informationen liefern.</p><p>"Methodenkonvention zur Ermittlung von Umweltkosten" des Umweltbundesamtes</p><p>Es gibt eine Fülle von Studien auf nationaler, europäischer und internationaler Ebene, die Umweltkosten schätzen. Die Schätzungen unterscheiden sich dabei je nach nationalen Gegebenheiten und methodischer Herangehensweise.</p><p>Eine seriöse und verlässliche Schätzung der Umweltkosten erfordert, wissenschaftlich anerkannte Bewertungsverfahren zu nutzen. Die Bewertungsmaßstäbe sollten begründet und möglichst für alle Anwendungsfelder identisch sein. Annahmen und Rahmenbedingungen müssen transparent gemacht werden. Dadurch lassen sich auch die Bandbreiten der Schätzungen in vielen Fällen erheblich eingrenzen.</p><p>Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ hat daher auf Grundlage der Arbeiten von Fachleuten mehrerer Forschungsinstitute (INFRAS, Fraunhofer ISI, EIFER, UFZ, CE Delft, David Anthoff (UC Berkeley)) die Methodenkonvention zur Ermittlung von Umweltkosten erarbeitet. Die derzeit aktuellste Version stellt die <a href="https://www.umweltbundesamt.de/publikationen/methodological-convention-32-for-the-assessment-of">Methodological Convention 3.2 for the Assessment of Environmental Costs</a> (derzeit nur in englischer Sprache verfügbar) dar, bei der es sich um eine Teilaktualisierung der&nbsp;<a href="https://www.umweltbundesamt.de/publikationen/methodenkonvention-umweltkosten">Methodenkonvention 3.1: Kostensätze</a>. Im Zuge der Teilaktualisierung wurden insbesondere die beiden Kapitel zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von Treibhausgasen und Luftschadstoffen überarbeitet: Die hier veröffentlichten Kostensätze basieren auf einem neuen Modell (Treibhausgase) bzw. auf aktualisierten Berechnungen und Annahmen (Luftschadstoffe). Auch in den übrigen Kapiteln wurden die neu ermittelten Kostensätze für Luftschadstoffe und Treibhause berücksichtigt. Abgesehen davon bilden die übrigen Kapitel jedoch weiterhin den Stand der Methodenkonvention 3.1 ab. Für 2025 ist die Veröffentlichung der umfassend überarbeiteten Methodenkonvention 4.0 geplant, welche dann sowohl in Deutsch wie auch in Englisch erscheinen soll.</p><p>Internalisierung von Umweltkosten</p><p>Umweltkosten sollten grundsätzlich internalisiert – also den Verursachern angelastet – werden. Da dies bisher nur unzureichend geschieht, gibt es keine hinreichenden wirtschaftlichen Anreize, die Umweltbelastung zu senken. Preise ohne vollständige Internalisierung der Umweltkosten sagen nicht die ökologische Wahrheit. Dies verzerrt den Wettbewerb und hemmt die Entwicklung und Marktdiffusion umweltfreundlicher Techniken und Produkte. Die Umweltkosten müssen vor allem in Bereichen die besonders hohe Umweltschäden verursachen, stärker als bisher in Rechnung gestellt werden. Dies würde beispielsweise den Ausbau der erneuerbaren Energien stärker fördern, die Anreize zur Energieeffizienz erhöhen und wesentlich zu einer nachhaltigen Mobilität beitragen. Aber auch in anderen Bereichen wie beispielsweise der Landwirtschaft und im Baugewerbe würde die Berücksichtigung der Umweltkosten dazu führen, dass nachhaltigere Produktions- und Konsummuster auch wirtschaftlich lohnender werden.</p><p>Methodik zur Schätzung von Klimakosten </p><p>Emissionen von Kohlendioxid (CO2) sind der Hauptverursacher des Klimawandels. Das Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) empfiehlt auf Grundlage der Methodenkonvention für im Jahr 2024 emittierte Treibhausgase einen Kostensatz von 300 Euro2024 pro Tonne Kohlendioxid (t CO2) zu verwenden (1% Zeitpräferenzrate). Bei einer Gleichgewichtung klimawandelverursachter Wohlfahrtseinbußen heutiger und zukünftiger Generationen (0% Zeitpräferenzrate) ergibt sich ein Kostensatz von 880 Euro2024 pro Tonne Kohlendioxid. Dabei bezeichnet Euro2024 jeweils die Kaufkraft des Euro zu Beginn des Jahres 2024. Auch für die Treibhausgase Methan und Lachgas können basierend auf dem Greenhouse Gas Impact Value Estimator (GIVE) Modell Klimakostensätze ermittelt werden, welche in der Tabelle „UBA-Empfehlung zu den Klimakosten“ dargestellt sind. Die Kosten infolge der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ anderer Treibhausgase können mit Hilfe des Treibhausgaspotenzials (Global Warming Potential) ermittelt werden.</p><p>Die Schäden, die durch die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen entstehen, steigen im Zeitablauf, beispielsweise da der Wert von Gebäuden und Infrastrukturen, die durch Extremwetterereignisse geschädigt werden, steigt. Daher steigen auch die anzusetzenden Kostensätze im Zeitablauf (siehe Tab. „UBA-Empfehlung zu den Klimakosten“). Weitere Erläuterungen hierzu finden Sie in der <a href="https://www.umweltbundesamt.de/publikationen/methodological-convention-32-for-the-assessment-of">Methodenkonvention 3.2: Kostensätze</a> (aktuell nur in englischer Sprache verfügbar).</p>

Erneuerbare Energien – Vermiedene Treibhausgase

<p>Erneuerbare Energien vermeiden Treibhausgase. In vielen Bereichen verdrängen sie fossile Energieträger und vermeiden damit Emissionen. Die meisten Emissionen werden durch die erneuerbare Stromerzeugung eingespart, aber auch im Wärme- und Verkehrssektor tragen erneuerbare Energien zum Klimaschutz bei. 2024 wurden so 259 Millionen Tonnen Kohlendioxid-Äquivalente vermieden.</p><p>Die verstärkte Nutzung erneuerbarer Energieträger führt zu einer Verdrängung fossiler Energien und somit zu einer zunehmenden Vermeidung klimaschädlicher Treibhausgase. Berechnungen des Umweltbundesamtes zeigen, dass der Einsatz erneuerbarer Energien in den letzten Jahrzehnten so einen wichtigen Beitrag zum ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimaschutz#alphabar">Klimaschutz</a>⁠ leisten konnte. Im Jahr 2024 vermieden erneuerbare Energien 259 Millionen Tonnen CO2-Äquivalente. Seit dem Jahr 2000 ist dieser Wert auf mehr als das Fünffache gestiegen (siehe Abb. „Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung erneuerbarer Energien“).</p><p>Beiträge der verschiedenen Erneuerbaren Energieträger zur Treibhausgasvermeidung</p><p>Wichtigster Energieträger bei der Vermeidung von ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen ist die Windenergie. Sie kommt ausschließlich in der Stromerzeugung zum Einsatz. Zweitwichtigster Energieträger ist die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠: Vor allem die erneuerbare Wärmeversorgung, aber auch erneuerbare Kraftstoffe basieren bislang überwiegend auf Bioenergieträgern. Auch in Kraftwerken wird mit Biomasse Strom bzw. mit Kraft-Wärme-Kopplung (KWK) zusätzlich Wärme erzeugt (siehe Abb. „Vermiedene Treibhausgas-Emissionen durch die Nutzung erneuerbarer Energien im Jahr 2024“).</p><p>Stromerzeugung</p><p>Die erneuerbaren Energien in der Stromerzeugung leisten mit Abstand den wichtigsten Beitrag bei der Vermeidung von Treibhausgasen. Ihr Anteil beträgt etwa 80 %. Der Umfang der vermiedenen Emissionen ist in den vergangenen Jahrzehnten fast kontinuierlich gewachsen. Insgesamt zeigt die Entwicklung seit dem Jahr 2010, dass sich der erfolgreiche Ausbau der erneuerbaren Energien besonders im Stromsektor positiv auf die Vermeidung von Treibhausgasen auswirkt: Insbesondere durch die Entwicklung bei der Windenergie und der Photovoltaik werden mittlerweile mehr als 2,5-mal so viele Treibhausgase vermieden wie noch 2010 (siehe Abb. „Stromsektor: Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung erneuerbarer Energien“).</p><p>Wärmeerzeugung</p><p>Im Wärmesektor trägt vor allem die Nutzung fester ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠ (also vor allem Holz) zur Vermeidung von Treibhausgasen bei (siehe Abb. „Wärmesektor: Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung erneuerbarer Energien“). Allerdings ist die Bedeutung von fester Biomasse zwischen 2010 und 2024 zurückgegangen. Zugenommen hat der Beitrag biogener Gase und vor allem die Emissionsvermeidung durch die Nutzung von Solarthermie, Geothermie und Umweltwärme. Sie machen nun knapp 18 % der Emissionsvermeidung im Wärmesektor aus.</p><p>Ausführlichere Informationen zum Einsatz erneuerbarer Energien im Wärmesektor finden Sie auch im Artikel „<a href="https://www.umweltbundesamt.de/daten/energie/energieverbrauch-fuer-fossile-erneuerbare-waerme">Energieverbrauch für fossile und erneuerbare Wärme</a>“.</p><p>Verkehr</p><p>Biokraftstoffe und Elektrifizierung im Verkehr vermeiden ebenfalls Emissionen im Umfang von mehreren Millionen Tonnen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Kohlendioxid-quivalente#alphabar">Kohlendioxid-Äquivalente</a>⁠ (siehe Abb. „Verkehrssektor: Vermiedene ⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>⁠-Emissionen durch die Nutzung biogener Kraftstoffe und Strom“). Allerdings bleibt der Verkehrssektor der Bereich mit dem geringsten Anteil an erneuerbaren Energien – und damit auch der Sektor mit der geringsten Emissionsvermeidung.</p><p>Die Menge vermiedener Treibhausgas-Emissionen geht im Wesentlichen einher mit der Entwicklung des Einsatzes Erneuerbarer Energien im Verkehrssektor (siehe Artikel „Erneuerbare Energie im Verkehr“). Im Jahr 2024 wie schon im Jahr 2010 wird die Vermeidung von Treibhausgas-Emissionen vor allem Biodiesel und Hydriertem Pflanzenöl (HVO) sowie Bioethanol getragen.</p><p>Methodische Hinweise</p><p>Die Berechnungen zur Emissionsvermeidung durch die Nutzung erneuerbarer Energien basieren auf einer Netto-Betrachtung (Netto-Bilanz). Dabei werden die durch die Endenergiebereitstellung aus erneuerbaren Energien verursachten Emissionen mit denen verrechnet, die durch die Substitution fossiler Energieträger brutto vermieden werden. Vorgelagerte Prozessketten zur Gewinnung und Bereitstellung der Energieträger sowie für die Herstellung und den Betrieb der Anlagen werden dabei weitestgehend mit einbezogen.</p><p>Die detaillierte Methodik zur Berechnung des Indikators wird in der Publikation „<a href="https://www.umweltbundesamt.de/publikationen/emissionsbilanz-erneuerbarer-energietraeger-2023">Emissionsbilanz erneuerbarer Energieträger"</a> beschrieben.</p>

WMS MRH Landkreis Uelzen

Web Map Servise (WMS) mit Fachdaten aus dem Landkreis Uelzen im Rahmen der Geodateninfrastruktur der Metropolregion Hamburg. Themen wie Schulstandorte, Berufsbildende Schulen, Campingplätze und Eignungsflächen für Windenergie werden über diesen WMS-Dienst dargestellt. Der WMS-Dienst ist für die Nutzung im Rahmen der Geodateninfrastruktur der Metropolregion Hamburg. Die Datensatzbeschreibungen zu den einzelnen Themen sind über den Metadatenkatalog des Landes Niedersachsen zu finden (http://www.geodaten.niedersachsen.de/portal/live.php?navigation_id=8651&article_id=25492&_psmand=28). Genauere Informationen erhalten Sie über den Landkreis Uelzen. Zur genaueren Beschreibung der Daten und Datenverantwortung siehe Beschreibungen der dargestellten Daten im Metadatenkatalog des Landes Niedersachsen. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

1 2 3 4 5405 406 407