API src

Found 530 results.

Analyse von Getriebegeraeuschen

Im Rahmen der zunehmenden Anstrengungen im Umweltschutz finden bei Maschinen und Anlagen die akustischen Emissionswerte immer staerkere Beachtung. Zum einen fuehren erhoehte Schalleistungen im Arbeitsumfeld zu gesundheitlichen Beschwerden, zum anderen stellen sie ein Mass zur Beurteilung der relativen Guete von Antriebsanlagen dar. Ferner ergibt sich als Nebeneffekt die Moeglichkeit, anhand einer Schallemissionsanalyse im Zeitbereich Maschinenschaeden voraussagen bzw. verhindern zu koennen. Um diese Diagnostik anwenden zu koennen, sind zunaechst Erkenntnisse ueber die Entstehung des Schalls bei unterschiedlichen Parametern notwendig. Im Rahmen des vorliegenden Projektes sollen mit praktischen Untersuchungen an einem Verspannpruefstand diese Erkenntnisse an einem Getriebe bei dynamischer Betriebsweise gefunden werden.

Untersuchung und Bewertung von Staub, Endotoxin, Schadgasen und Keimen in ausgewählten Stallsystemen mit freier Lüftung

Ziel: Das Ziel ist die Erfassung und Bewertung von Emissionen in 13 modernen Rinder-, Schweine- und Geflügelstallungen in Bayern unter den Aspekten Arbeitsmedizin, Tiergesundheit und Umweltwirkung. Methodik: Die ganztägigen Messkampanien erfolgen von Sommer 2004 bis Frühjahr 2005. Ergebnisse: Erste Auswertungen erfolgen im Frühjahr 2005.

EPHECT: Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU

Messungen von vulkanischen Schwefel- und Kohlenstoffemissionen mit hoher Zeitauflösung

Dies ist ein Antrag auf Reisekosten für eine Reise von Deutschland nach Argentinien zum Besuch der Vulkane Copahue and Peteroa, dort planen wir zusammen mit Forschern aus Argentinien in-situ Messungen von vulkanischem SO2 mit einem neuartigen Instrument. In Kombination mit in-situ CO2 Messungen erwarten wir einen Datensatz von CO2/SO2 Verhältnissen mit bisher unerreichter Genauigkeit und Zeitauflösung.Obwohl Fernerkundungsmessungen von SO2 sich mittlerweile in der Vulkanologie weit verbreitet haben, stellen bodengebundene und Flugzeug-getragene in-situ-Messungen immer noch eine wichtige Quelle ergänzender Information dar. Heutzutage werden in-situ Messungen von SO2 häufig mittels elektrochemischer Sensoren vorgenommen, diese weisen allerdings eine Reihe von Nachteilen auf, insbesondere (1) relativ lange Ansprechzeiten (ca. 20 s und mehr), (2) Interferenzen durch eine Reihe anderer reaktiver Gase, die sich in Vulkanfahnen finden (und die schwer zu quantifizieren bzw. unbekannt sind), (3) Die Notwendigkeit häufiger Kalibration. Wir lösen diese Probleme mit einem neuentwickelten, optischen in-situ SO2-Sensor Prototypen, der nach dem Prinzip der nicht-dispersiven UV-Absorption arbeitet (PITSA, Portable in-situ Sulfurdioxide Analyser). Die preisgünstige Anwendung des Prinzips für SO2 - Messungen wurde durch die Entwicklung von UV-LEDs ermöglicht. Die Probenluft wird durch eine Glasröhre gesaugt und dort der kollimierten Strahlung einer UV-LED (ca. 290nm) ausgesetzt, in diesem Wellenlängenbereich absorbiert (von den relevanten Vulkangasen) praktisch nur SO2. Daher ist die Abschwächung der Strahlungsintensität nach Durchgang durch die Messzelle ein Mass für den SO2-Gehalt der Messluft. Das PITSA Instrument wird mit einem kommerziellen CO2 Sensor kombiniert, damit werden SO2 und CO2 Messungen mit 0.1 ppm bzw. 1 ppm Genauigkeit möglich. Dadurch eröffnen sich neue Möglichkeiten in der Vulkanologie.

Schwerpunktprogramm (SPP) 1294: Bereich Infrastruktur - Atmospheric and Earth system research with the 'High Altitude and Long Range Research Aircraft' (HALO), Bestimmung der zwei- und drei- dimensionalen Verteilung von Spurengasen mit dem Heidelberger Abbildendes Flugzeug-DOAS Instrument (HAIDI) auf HALO, in der Phase II Mission EMerGe

Ziel des Projektes ist die Untersuchung der chemischen Zusammensetzung von Abgasfahnen großer urbaner Flächenquellen (Millionenstädte) in Europa und Asien mittels eines neuartigen 2D bzw. 3D DOAS-Fernerkundungsinstruments. Die Arbeiten sind Teil der für das deutsche Forschungsflugzeug HALO geplanten EMerGe Mission, eine zusätzliche Beteiligung an der CAFE Mission wird gegenwärtig noch untersucht. Flugzeuggebundene Beobachtungen des HAIDI-Instruments ermöglichen die Messungen von Schlüsselparametern der von Flächenquellen ausgehenden Fahnen, wie z.B. der Spurengase NO2, HCHO, SO2, CHOCHO, BrO, IO, OClO, H2O, O4 und O3 sowie von optischen Eigenschaften des Aerosols. Die räumliche Auflösung der resultierenden 2D-Karten der Spurenstoffverteilungen ist besser als 100m, die Breite des Abtaststreifens etwa 10 km, so dass in kurzer Zeit eine große Fläche erfasst wird. Tomographischen Methoden ermöglicht die Rekonstruktion von 3D-Bildern, die auch die Vertikalverteilung von Spurengasen beinhalten. Somit quantifiziert HAIDI die wichtigsten Spezies zur Analyse der chemischen Zusammensetzung und Umwandlung in der Abluft von Flächenquellen. Unsere Studien zielen auf die Untersuchung topographischer und meteorologischer Einflüsse auf Ausdehnung, Verteilung und Ausbreitung derartiger Abgasfahnen. Besonderes Augenmerk liegt dabei auf Emission, Umwandlung und Abbau der Schlüsselkomponente NO2. Die chemische Evolution von Spurengasen und des Aerosols, die sich auch unseren Daten zusammen mit weiteren auf HALO gemessenen Verbindungen ergibt, ermöglicht dann die Beantwortung von Fragen bezüglich der lokalen, regionalen und globalen Auswirkungen von großflächigen Emissionen. Insbesondere dienen die Bestimmungen der optischen Parameter des Aerosols, wie sie von HAIDI vorgenommen wird, auch der Quantifizierung des Einflusses solcher Fahnen auf den Strahlungshaushalt. Die genannten Ergebnisse dienen des Weiteren zur Validierung und Verbesserung von Modellen im Rahmen des EMerGe Projekts sowie zur Validierung von Satellitendaten. Damit wird erstmals ein System operationell, das mit einer Kombination von drei abbildenden Spektrometern 3D-Informationen über Spurengasverteilungen und Aerosol liefern kann. Im Rahmen des Projektes werden - basierend auf unseren Vorarbeiten - die notwendigen tomographischen Algorithmen entwickelt. Da dies der erstmalige Betrieb von HAIDI auf HALO ist muss das Instrument im Rahmen des Projektes auch zugelassen und ggf. adaptiert werden.

Emissionen aus dem Straßenverkehr und städtische Lufthygiene: Neue Möglichkeiten aus zeitlich hoch aufgelöster Analyse

In diesem Projekt sollen zeitlich hoch aufgelöste Spurengasmessungen und Messungen der Größenspektren der Aerosolpartikel an einem Verkehrsstandort zu einer deutlichen Weiterentwicklung unseres Verständnisses der Dynamik der Konzentrationen von Luftschadstoffen im städtischen Umfeld sowie der Emissionen aus dem Straßenverkehr beitragen. Neue, schnelle Techniken sollen das bereits gut entwickelte Grundlagenwissen zu Emissionsverhältnissen NO / NO2 / NOx einzelner Fahrzeuge und Fahrzeuggruppen entwickeln, den Einfluss auf die Ozonchemie und die Interaktion mit dem vorhandenen Ozon studieren, Emissionsverhältnisse NH3 / CO2 und NOx / CO2 unter realen Bedingungen quantifizieren, und vor allem die Emissionen der Aerosopartikel in einem weiten Größenspektrum (einige nm bis über 1 mym Durchmesser) detailliert quantifizieren. Dies bedeutet und ermöglicht eine neuartige Analyse der Emissionen von Partikeln im echten Straßenverkehr. Die vorgeschlagenen Konzepte und Messungen ergänzen sich mit anderen modernen Konzepten der Analyse von Luftverschmutzung und Emissionen wie z.B. multi-Sensoren-Anwendungen, Einsatz mobiler Plattformen, oder Eddy-Kovarianz. Hier wird Grundlagenforschung vorgeschlagen, die in Ergänzung mit anderen Anwendungen und Konzepten einschließlich Modellierung zu einer deutlichen Verbesserung unseres Verständnisses der städtischen Umwelt führen wird. Das Herzstück der experimentellen Forschung ist eine 18-monatige Messreihe am Straßenrand, die allerdings von zwei Intensivmesskampagnen (IOPs) um Kenntnisse zur räumlichen Representativität und zur chemischen Zusammensetzung der Partikel im Größenspektrum ergänzt werden.

Alterierung von Wüstenaerosol in belasteten Umgebungen und ihr Einfluss auf die optischen Eigenschaften

Die Strahlungsabsorption des atmosphärischen Aerosols ist einer seiner Haupteffekte im Einfluss auf die solar-terrestrische Energiebilanz und damit auf das Klima. Die Absorption wird im Wesentlichen durch drei Komponenten verursacht: Ruß, Mineralstaub und absorbierende Organika. Allerdings sind die relativen Beiträge dieser Stoffe aus anthropogenen und natürlichen Quellen nicht gut bekannt. Der vorliegende Antrag zielt daher auf eine Quantifizierung Ruß-, Staub- und organischen Anteils, basierend auf der Analyse der chemischen Zusammensetzung und Struktur viele einzelner Partikel mittels Elektronenmikroskopie. Das östliche Mittelmeer wurde als Fokusregion ausgewählt, da hier im Frühjahr eine komplexe Mischung von Aerosol aus der Biomassenverbrennung, anthropogenen Emissionen, marinem Aerosol und afrikanischem sowie asiatischem Wüstenstaub entsteht. Die vorgeschlagenen Arbeiten werden in Verbindung mit einer von dritter Seite finanzierten großen Flug- und Bodenmesskampagne durchgeführt. Hierbei ergibt sich die einmalige Gelegenheit, Messungen aus der Fokusregion in Verbindung mit einer Vielzahl anderer atmosphärischer Messungen sowie Aerosol- und Wolkenmessungen zu erhalten. Hauptziele des Projektes sind: A) Charakterisierung der Aerosolzusammensetzung: Aerosoltypen werden an Hand chemischer Merkmale identifiziert und quantifiziert. Größenverteilungen der chemischen Zusammensetzung werden erstellt für Partikel kleiner 2.5 mym aus der relativen Zusammensetzung und externen Größenverteilungsmessungen, für größere Partikel direkt aus spezialisierten Sammelverfahren. B) Aufteilung in volatile / nichtvolatile Komponenten: entsprechende Komponenten werden auf Einzelpartikelbasis identifiziert und quantifiziert. Typen nichtvolatiler Komponenten werden unterschieden. C) Aufteilung nach Staub- / Ruß-Absorption für Einzelpartikel: Der absorbierende Anteil im atmosphärisch alterierten Aerosol wird an Hand chemischer und morphologischer Kriterien identifiziert. Durch Bildanalyse wird der jeweilige Volumenbeitrag bestimmt. Die Konzentration absorbierender Anteile wird dann zur Bestimmung der relativen Beiträge von Staub und Ruß genutzt. Rußmikrosktruktur und chemische Zusammensetzung werden genutzt, um Haupt-Rußquellen zu identifizieren. D) Ermittlung des Einflusses der Staubquelle auf die Staubabsorption: Die Absorption, modelliert durch die Staubzusammensetzung, wird im Hinblick auf die jeweilige Quelle untersucht; basierend auf einer Jahreszeitreihe können so systematische Zusammenhänge aufgedeckt werden. Insgesamt wird das vorgeschlagene Projekt neue und detailreiche Einsichten in die Beiträge zur Absorption und den Mineralstaub-Beitrag zum Strahlungsantrieb in einer belasteten und gemischten Umgebung liefern, möglicher Zusammenhänge zwischen Staubquelle und Absorption aufdecken und Information über die Haupt-Rußquellen liefern.

FeinPhone - Partizpatorische Feinstaubmessungen mit Smartphones in Szenarien zukünftiger Smart Cities

Von Feinstaub können erhebliche Gesundheitsrisiken ausgehen: Er kann beim Menschen in die Atemwege und sogar bis in die Lungenbläschen oder den Blutkreislauf eindringen. Dort kann er Zellen schädigen oder auch andere toxische Stoffe tief in den Körper bringen. Die Feinstaubbelastung in Städten wird heute durch teure, statische Messstationen mit schlechter räumlicher und zeitlicher Auflösung überwacht. Um feingranulare dynamische Belastungskarten und reaktive Systeme in Szenarien zukünftiger Smart Cities zu ermöglichen, müssten dichte, verteilte Messungen vorgenommen werden. Eine Möglichkeit dafür sind partizipatorische Messungen auf Basis von Sensorik in Smartphones. Beim sogenannten 'Participatory Sensing' werden Privatpersonen mit kostengünstigen mobilen Sensoren ausgestattet, etwa integriert in bereits vorhandene Smartphones oder als eigenständige Geräte. Durch die Mobilität der einzelnen Teilnehmer kann eine höhere räumliche Auflösung erreicht werden. Beispiele für die erfolgreiche Umsetzung solcher Ansätze sind etwa Systeme zur Erstellung von Geräuschbelastungskarten oder zur Erfassung von Schlaglöchern, kaputten Ampeln und Verschmutzungen in Städten. Während solche Projekte meist auf regulären Smartphones und der darin verbauten Sensorik basieren, existieren integrierte Sensoren zur Messung von Feinstäuben in Smartphones noch nicht. Vergangene Arbeiten haben jedoch gezeigt, dass die Hintergrund-Feinstaubbelastung selbst mit äußerst einfachen, bereits relativ kleinen Staubsensoren erfasst werden kann. Prinzipiell ist es auch möglich das Messprinzip dieser Sensoren (Lichtstreuung) an Smartphones mit integrierter Kamera zu adaptieren. Das Projekt FeinPhone hat das Ziel, eine solche neuartige Sensorkomponente für Smartphones zur Messung von Feinstaub zu entwickeln und zu evaluieren und im Zuge der Evaluation ggf. einen Referenzdatensatz für die zukünftige Algorithmenentwicklung zu schaffen. Dies schließt das Design der externen Sensorhardware sowie geeigneter Algorithmen zur Verarbeitung der aufgenommenen Daten ein.

THG-Bilanz für Ethanol aus Weizenstroh und Maisstrohsilage

Vergleich der Treibhausgasminderungen von Industriestaaten - Exploring comparable post-2012 reduction efforts - EU climate targets substantial emission reductions for developed countries are obligatory

The study assesses different approaches to turn emission reducing efforts of different countries (Annex I) comparable. The emission reducing targets and costs are very different for the Annex I countries. In order to achieve the EU climate target of 2 C the EU has to reduce its emissions by 30Prozent. In addition other developed countries must commit themselves to emission reductions by 15 - 30Prozent and economically more advanced developing countries must also contribute proportionally in accordance to their responsibilities and respective capabilities.

1 2 3 4 551 52 53