API src

Found 234 results.

BHKW-Wärmespeicher mit makrogekapselter PCM-Schüttung

Blockheizkraftwerke (BHKW) eignen sich besonders für dezentrale Strom- und Wärmekonzepte und bilden eine effiziente Regelenergiequelle für virtuelle Kraftwerke. Es ist daher notwendig, die Erzeugung von Strom und Wärme durch geeignete Speichersysteme im Tageslastgang weitestgehend zu entkoppeln. Latentwärmespeicher (LWS) ermöglichen im Vergleich zu Wasserspeicher höhere Speicherdichten, kommen aber aufgrund hoher Kosten bislang kaum zum Einsatz. Für kompakte Systemlösungen aus Klein-BHKW und Speicher wären jedoch höhere Speicherdichten jedoch wünschenswert. Zielstellung des Projektes ist daher die Untersuchung von Makroverkapselungen für Latentspeichermedien (PCM) auf der Basis von Beutelverpackungen, mit denen die Speicherkosten reduziert werden können. Durch eine modulare Bauweise des Speichers wird zudem eine Anpassung an verschiedene Anwendungsfälle ermöglicht.

E3ON: Effiziente elektrische Energiespeicher für den öffentlichen Nahverkehr

Die Hybridisierung von im öffentlichen Nahverkehr eingesetzten Fahrzeugen bietet die Möglichkeit signifikanter Treibstoff- und Emissionsreduktionen, da die Fahrzyklen gut vorhersehbar sind und häufige Brems- und Beschleunigungsvorgänge enthalten (Start-Stopp Betrieb). Der Einsatz verfügbarer elektrochemischer Speicher (Batterien, Ultracaps) zur Zwischenspeicherung der Bremsenergie ist zwar möglich, jedoch können die geforderten Leistungen bzw. die gewünschte Lebensdauer nur mit großem finanziellen Aufwand bzw. starker Überdimensionierung des Energiespeichers erreicht werden. Im Gegensatz zu den elektrochemischen Speichern bieten Flywheel-Speicher das Potenzial, eine hohe Leistungsdichte mit einer hohen Energiedichte zu verbinden. Durch den Einsatz moderner (Verbund-)Materialien sowohl im Schwungrad selbst wie auch in den Lagern können Flywheel-Speicher sehr kompakt und leicht gebaut werden. Außerdem erreichen sie bereits mit heute verfügbarer Lager-Technologie eine im Vergleich zu modernen Batteriesystemen deutlich erhöhte Lebensdauer. In dem Projekt E3ON soll die Realisierbarkeit von kompakten Flywheel-Speichern unter den in öffentlichen Nahverkehrsfahrzeugen gegebenen Rahmenbedingungen untersucht werden: Gemeinsam mit potenziellen Kunden (siehe beiliegende LOI) werden für Schienenfahrzeuge und Hybridbusse typische Lastprofile sowie extern auftretende mechanische Belastungen (Vibrationen, Fliehkräfte, ...) spezifiziert. Auf deren Basis werden die Hauptkomponenten des Systems (Schwungmasse und Lagerung, Motor/Generator, Umrichter) theoretisch und experimentell in Bezug auf Lebensdauer und Sicherheitsaspekte untersucht. Das Ergebnis der Forschungsarbeiten sind Realisierungsvorschläge für die einzelnen Komponenten sowie eine erste Abschätzung der unter den gegebenen Randbedingungen erreichbaren Lebensdauer und der Kosten. Daraus können die wichtigsten Parameter eines im Rahmen eines Folgeprojekts zu realisierenden Prototyps bzw. Vorseriengeräts abgeleitet werden, wobei speziell der erreichbare Wirkungsgrad (round-trip efficiency), der speicherbare Energieinhalt, die aufnehmbare bzw. abgebbare elektrische Leistung, die erreichbare Lebensdauer und der zu erwartende Preis von Interesse sind. Zusätzlich können die Projektergebnisse zur Beurteilung der Realisierbarkeit von noch weiter miniaturisierten Flywheel-Speichern herangezogen werden. Derartige Speicher eignen sich zum Einsatz in Hybrid- und Elektrofahrzeugen des zukünftigen Individualverkehrs.

ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilität, ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilität

Zur Entwicklung geeigneter Kathodenwerkstoffe für Aluminum-Ionen-Systeme mit hoher volumetrischer Energiedichte werden am Fraunhofer IISB mit seiner Außenstelle THM geeignete Interkalationsmaterialien auf der Basis von Metalloxiden, einschließlich der strukturellen und elektrochemischen Charakterisierung untersucht. Am Fraunhofer IZM sollen Schwefelverbindungen als Kathode für Aluminium-Ionenbatterien untersucht werden. Ziel ist es, schwefelbasierte Nanomaterialien als Kathoden zu synthetisieren und deren physikochemische Charakterisierung durchzuführen.

ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilität, ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilität

Gesamtziel des Verbundprojektes ist die Entwicklung, Charakterisierung und Qualifizierung eines neuartigen Energiespeichers auf Basis eines Al-Ionen-Batteriesystems mit hoher Energiedichte (300 Wh/kg, 690 Wh/l1) für mobile Anwendungen als alternatives Konzept gegenüber den etablierten, aber auch den in der Entwicklung befindlichen Li-Ionen-Systemen.

GO3: Hochenergie-Lithiumbatterien für automotive und stationäre Anwendungen, Teilprojekt: Weiterentwicklung und chemische Oberflächenmodifizierung des HE-NCM Kathodenmaterials und Entwicklung von hochvoltstabilen Elektrolyten und Elektrolytadditiven

Die Erhöhung der Energiedichte von Lithium-Batterien bei gleichen Kosten stellt einen der wichtigsten Punkte dar, die Reichweite von Elektrofahrzeugen zu vergrößern und somit der Elektromobilität zum Durchbruch zu verhelfen. Derzeit sind Fahrzeuge mit Zelltechnologien der Generationen 1 und 2 im Einsatz, die Kathoden basierend auf LFP, LMO, NCA) oder NCM verwenden. HE-NCM (ein Kathodenmaterial der 3. Generation) stellt ein lithium- und manganreiches Kathodenmaterial dar, dass sich aufgrund seiner hohen Kapazität von über 200 mAh/g sehr gut für Hochenergie-Lithium-Ionen-Zellen eignet. Zudem besitzt es einen Kostenvorteil, da Mangan ein gegenüber Kobalt gut verfügbarer Rohstoff ist. Jedoch befindet es sich noch nicht in einem marktreifen Entwicklungsstadium. In GO 3 wird die BASF HE-NCM unter verschiedenen Gesichtspunkten verbessern. Dies beinhaltet: - Weiterentwicklung des Kathodenmaterials durch Methoden der chemischen Modifizierung und eine Verbesserung der klassischen Materialbeschichtung. - Neuartige Beschichtungsmethoden, die auf der Wechselwirkung von organischen Komponenten mit der Oberfläche von Übergangsmetalloxiden beruhen. - Entwicklung von hochvoltstabilen Elektrolyten und Elektrolytadditiven. Sämtliche Arbeitspakete beinhalten sowohl die synthetischen, analytischen Aspekte, sowie umfassende elektrochemische Testung der Materialien in Labor-Zellformaten: - Zyklenstabilität und Impedanzaufbau (durch Bestimmung des flächenspezifischen Widerstands), Gasentwicklung und Kapazitätserhalt bei Ladezustand von 100% und Lagerung bei erhöhter Temperatur (z.B. 60°C) und Auflösungsverhalten von Übergangsmetallionen während Zyklisierung und Lagerung.

H2020-EU.3.3. - Societal Challenges - Secure, clean and efficient energy - (H2020-EU.3.3. - Gesellschaftliche Herausforderungen - Sichere, saubere und effiziente Energieversorgung), SUNlight-to-LIQUID: Integrated solar-thermochemical synthesis of liquid hydrocarbon fuels (SUN-to-LIQUID)

Liquid hydrocarbon fuels are ideal energy carriers for the transportation sector due to their exceptionally high energy density and most convenient handling, without requiring changes in the existing global infrastructure. Currently, virtually all renewable hydrocarbon fuels originate from biomass. Their feasibility to meet the global fuel demand and their environmental impact are controversial. In contrast, SUN-to-LIQUID has the potential to cover future fuel consumption as it establishes a radically different non-biomass non-fossil path to synthesize renewable liquid hydrocarbon fuels from abundant feedstocks of H2O, CO2 and solar energy. Concentrated solar radiation drives a thermochemical redox cycle, which inherently operates at high temperatures and utilizes the full solar spectrum. Thereby, it provides a thermodynamically favourable path to solar fuel production with high energy conversion efficiency and, consequently, economic competitiveness. Recently, the first-ever production of solar jet fuel has been experimentally demonstrated at laboratory scale using a solar reactor containing a ceria-based reticulated porous structure undergoing the redox cyclic process. SUN-to-LIQUID aims at advancing this solar fuel technology from the laboratory to the next field phase: expected key innovations include an advanced high-flux ultra-modular solar heliostat field, a 50 kW solar reactor, and optimized redox materials to produce synthesis gas that is subsequently processed to liquid hydrocarbon fuels. The complete integrated fuel production chain will be experimentally validated at a pre-commercial scale and with record high energy conversion efficiency. The ambition of SUN-to-LIQUID is to advance solar fuels well beyond the state of the art and to guide the further scale-up towards a reliable basis for competitive industrial exploitation. Large-scale solar fuel production is expected to have a major impact on a sustainable future transportation sector.

BCT - Battery Cell Technology^BCT - Battery Cell Technology^BCT - Battery Cell Technology^BCT - Battery Cell Technology^BCT - Battery Cell Technology^BCT - Battery Cell Technology, BCT - Battery Cell Technology

FH-Impuls 2016: 'Zukünftige Li-basierte Energiespeicher: Neue Materialsysteme, Fertigungsprozesse und Qualitätsbewertungsmethoden (LiMaProMet)' im Gesamtvorhaben 'Smarte Materialien und intelligente Produktionstechnologien für energieeffiziente Produkte der Zukunft (SmartPro)'

Das Impulsprojekt LiMaProMet beschäftigt sich mit der Verbesserung von Interkalationsmaterial-basierten Akkumulator-Kathoden sowie dem Thermomanagement von Batteriezellen. Dabei wird parallel eine geeignete, produktionsbegleitende Qualitätssicherung ausgearbeitet, die auf die speziellen Aspekte des für das Projekt charakteristischen dreidimensionalen Elektrodenaufbaus fokussiert. Hierbei kommen auch Methoden der künstlichen Intelligenz (selbstlernende Algorithmen) zum Einsatz. Für die hochperformanten Elektroden werden zwei neue, innovative Wege verfolgt, um Elektroden mit Fokus auf einer hohen gravimetrischen bzw. volumetrischen Leistungs- bzw. Energiedichte zu entwickeln. Dabei werden außerdem die Aspekte Energieeffizienz, Zyklenfestigkeit und Sicherheit mit berücksichtigt. Zum einen kommt ein von der Hochschule Aalen entwickeltes, völlig neues galvanotechnisches Verfahren zum Einsatz, das es erlaubt, auf die sonst erforderlichen Leitfähigkeits- und Binderadditive zu verzichten. Dadurch sind konzeptbedingt erhöhte Energie- und Leistungsdichten möglich. Alternativ dazu wird der klassische Ansatz der Aufbringung eines Slurries aus Aktivmaterial, Leitfähigkeits- und Binderadditiv auf die Beschichtung/Infiltration zellularer Trägermaterialien erweitert. Dies ermöglicht die Realisierung erhöhter Flächenbeladungen, wodurch die Energiedichte der Elektroden gesteigert werden kann. Im Rahmen des Projekts sollen geeignete Infiltrationsverfahren in Kombination sowohl mit heute bereits eingesetzten als auch zukünftigen Hochenergiematerialien ermittelt werden. Als weiterer Ansatz zur Verbesserung der Zellperformance, vor allem unter hohen Stromraten (Hochleistungsanwendungen und Schnellladeszenarien) bzw. zur weiteren Verbesserung der Zellsicherheit wird die Eignung von Phase-Change-Materials für das Thermomanagement des gesamten Zellpacks untersucht. Dies erfolgt zunächst durch Modellierung und Simulation sowie nachfolgend durch Validierung und Erprobung.

STACK - Schnelles Stapeln für die Massenfertigung von kostengünstigen und sicheren Li-Ionen-Zellen und Weiterentwicklung von Elektroden- und Separatormaterialien - Material-, Prozess- und Anlagenentwicklung und Qualifizierung im Produkt, STACK - Schnelles Stapeln für die Massenfertigung von kostengünstigen und sicheren Li-Ionen-Zellen und Weiterentwicklung von Elektroden- und Separatormaterialien - Material-, Prozess- und Anlagenentwicklung und Qualifizierung im Produkt

Grundsätzlich können Stapelzellen wegen ihres homogenen Aufbaus Vorteile gegenüber gewickelten Zellen haben. Daneben weisen gestapelte Zellen durch die bessere Raumausnutzung eine um 2-5 % höhere Zellkapazität auf. Ein großer Nachteil des Einzelblatt-Stapelverfahrens ist jedoch der geringere Durchsatz bei den derzeit verfügbaren Anlagen. Die Manz AG wird nach Evaluierungs- und Designphase eine demonstratorische Stapelanlage entwickeln, diese bauen und im Betrieb qualifizieren. Es ist geplant, diesen Demonstrator an der Forschungsproduktionslinie (FPL) am ZSW zu betreiben. Das Ziel dieses Vorhabens ist es, den Nachteil des geringeren Durchsatzes eines Staplers im Rahmen der geplanten Arbeiten mindestens zu kompensieren. Gleichzeitig sollen vergleichbare bis verbesserte Prozessausbeuten durch die Entwicklung bzw. Anpassung bestehender Prozesse und Handhabungstechnik im Vergleich zum Stapeln erzielt werden. Eine abschließende Evaluierung der Herstellkosten in einer Massenproduktion soll die Ergebnisse für die schnelle wirtschaftliche Übertragung und kommerzielle Verwertung im Vergleich zu herkömmlichen Materialien und Prozessen vorbereiten. Der Nachweis verbesserter Leistungsdichten, Zyklenfestigkeit, Langlebigkeit und Sicherheit gegenüber bisherigen Lithium-Ionen-Zellen ist ebenso ein Zielkriterium.

ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilität, ALIBATT - Al-Ionen-Batterie mit hoher volumetrischer Energiedichte für die Elektromobilität

Gesamtziel des Verbundprojektes ist die Entwicklung, Charakterisierung und Qualifizierung eines neuartigen Energiespeichers auf Basis eines Al-Ionen-Batteriesystems mit hoher Energiedichte (300 Wh/kg, 690 Wh/l ) für mobile Anwendungen als alternatives Konzept gegenüber den etablierten, aber auch den in der Entwicklung befindlichen Li Ionen-Systemen. Das Vorhabensziel wird in den Teilbereichen der Synthese und Charakterisierung eines geeigneten Kathodenmaterials (FhG IISB/THM Freiberg , FhG IZM Berlin), der Bewertung von Al-Legierungen für den Einsatz als Anode insbesondere im Hinblick auf der Vermeidung von Passivierungsschichten (DFI Frankfurt), der Entwicklung und Testung entsprechender Elektrolytsysteme (TU Clausthal, IoLiTec GmbH Heilbronn) und der elektrischen und elektrochemischen Analyse des Gesamtsystems in etablierten Mikrotestzellen (FhG IZM Berlin) gemeinsam durch die Verbundpartner umgesetzt. Darüber hinaus wird bereits in diesem frühen Stadium der Material- und Systementwicklungen ein Verwertungspfad derartiger innovativer Batteriesysteme erarbeitet und erste Konzepte für deren Umsetzung im Verbund erstellt (PEM der RWTH Aachen).

1 2 3 4 522 23 24