Zur Erreichung der CO2-Minderungsziele der Bundesregie-rung muss der Anteil der Fern- und Nahwärme im deut-schen Wärmemarkt deutlich gesteigert werden. Um das Potenzial zum Aufbau von leitungsgebundenen Wärmever-sorgungen in Deutschland zu bewerten, ist eine Analyse der siedlungsstrukturellen Gegebenheiten und des daraus re-sultierenden Entwicklungspotenzials erforderlich. Mit der vorliegenden Untersuchung konnte nachgewiesen werden, dass eine automatisierte Erfassung des Wärmenetzpotenzi-als unter Nutzung von Verfahren der Digitalen Bildanalyse und Geographischer Informationssysteme über eine Kom-bination von Top-down und Bottom-up Ansatz für das ge-samte Gebiet der BRD auf Quartiersebene möglich ist. Durch eine Weiterführung der entwickelten Methodik zur Erfassung der Wärmenetzpotenziale und den Einsatz weite-rer fernerkundlicher Datenquellen scheint perspektivisch die flächendeckende Erstellung örtlicher Energiekonzepte auf einer einheitlichen Basis möglich.
<p>Der Stromverbrauch in Deutschland ging seit dem Höhepunkt im Jahr 2007 tendenziell zurück. Den meisten Strom verbraucht die Industrie, gefolgt von den privaten Haushalten, dem Gewerbe-, Handels- und Dienstleistungssektor und dem Verkehrssektor.</p><p>Entwicklung des Stromverbrauchs</p><p>Der Höhepunkt des deutschen Stromverbrauchs wurde im Jahr 2007 mit 625 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) verzeichnet. Die Bundesregierung hat sich 2010 in ihrem <a href="https://www.bundesregierung.de/resource/blob/974430/439778/794fd0c40425acd7f46afacbe62600f6/2017-11-14-beschluss-kabinett-umwelt-data.pdf">Energiekonzept</a> zum Ziel gesetzt, den Stromverbrauch bis zum Jahr 2020 um 10 % gegenüber dem Verbrauch des Jahres 2008 zu senken. Dieses Ziel wurde im Jahr 2020 mit einem Rückgang um etwa 10,5 % erreicht. Allerdings war der Stromverbrauch in diesem Jahr von den Auswirkungen der Corona-Pandemie geprägt. Nach einem vorübergehenden Anstieg im Jahr 2021 sank der Stromverbrauch in den Jahren 2022 und 2023 schließlich auf den niedrigsten Wert seit der Wiedervereinigung. Allerdings waren beide Jahre von Sondereffekten durch den Krieg in der Ukraine gekennzeichnet (allgemeine Sparbemühungen wegen eines erwarteten Erdgas-Mangels 2022, Rückgang der Industrieproduktion). Im Jahr 2024 stieg der Stromverbrauch auf nunmehr 528 TWh (siehe Abb. „Bruttostromverbrauch“).</p><p>Künftig ist mit einer Zunahme des Stromverbrauchs zu rechnen, da Effekte der sogenannten „Sektorkopplung“ einzuplanen sind. Dazu zählt, dass sowohl Fahrzeugantriebe als auch die Wärmebereitstellung in Gebäuden (Stichwort Wärmepumpe) verstärkt elektrisch erfolgen sollen.</p><p>Maßnahmen: Energieeffizienz...</p><p>Die wichtigsten Maßnahmen in den Sektoren Haushalte und Kleinverbrauch sind die Ausweitung und Verbesserung von Effizienzstandards für elektrische Geräte und energieverbrauchsrelevante Produkte im Rahmen der Umsetzung der <a href="https://www.umweltbundesamt.de/themen/wirtschaft-konsum/produkte/oekodesign/oekodesign-richtlinie">Ökodesign-Richtlinie</a> (2009/125/EG) sowie eine wirksame Energieverbrauchskennzeichnung. Innovative Querschnittstechniken in der Industrie – etwa effizientere Elektromotoren und Druckluftsysteme – können darüber hinaus ebenfalls einen Beitrag leisten. Ein verpflichtendes Energiemanagement und die verbindliche Umsetzung von identifizierten wirtschaftlichen Einsparmaßnahmen können den Unternehmen dabei helfen, Kosten zu sparen.</p><p>… und Erneuerbare Energien</p><p>Im Verkehrssektor strebt die Politik eine Steigerung der Elektromobilität an. Dies geht einher mit einem stetig wachsenden Anteil erneuerbarer Energien am Stromverbrauch (siehe Abb. „Anteil erneuerbarer Energien am Bruttostromverbrauch“). Eine vorübergehende Ausnahme von diesem Trend war das Jahr 2021 mit einem deutlichen Rückgang des erneuerbaren Anteils auf Grund sehr ungünstiger <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Witterung#alphabar">Witterung</a> und geringen Zubaus neuer erneuerbarer Kapazitäten. Hintergründe zu dieser Entwicklung sind auf folgender Webseite zu finden (<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen#uberblick">Link</a>). Im Jahr 2024 stieg der Anteil der erneuerbaren Energien am <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Bruttostromverbrauch#alphabar">Bruttostromverbrauch</a> auf einen neuen Höchstwert von 54,1 %. Wesentlich dafür war unter anderem ein neuer Höchststand bei der Einspeisung von Strom aus Wind- und Photovoltaikanlagen (siehe Artikel „<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen#strom">Erneuerbare Energien in Zahlen</a>“) bei einem wieder leicht steigenden Bruttostromverbrauch.</p><p>Die Erneuerbaren leisten damit im Bereich der Stromversorgung einen großen Anteil zum Erreichen der deutschen Klimaschutzziele. Im Erneuerbare-Energien-Gesetz hat der Gesetzgeber im Jahr 2022 verankert, dass der Anteil der erneuerbaren Energien am Stromverbrauch bis 2030 auf mindestens 80 % steigen soll.</p>
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
Spätestens seit der Verkündung der nationalen Wasserstoffstrategie im Jahr 2020 spielt die Produktion und Verwendung von Grünem Wasserstoff in der deutschen und auch in der europäischen Energiewende eine bedeutende Rolle. Durch Grünen Wasserstoff wird die Sektorenkopplung ermöglicht und Grüner Strom kann für lange Zeiträume gespeichert werden. Die notwendigen Komponenten der Technologie, von der Erzeugung von Grünem Wasserstoff über den Transport bis hin zur Rückumwandlung in andere Energieformen, sind am Markt erprobt und werden aktuell skaliert. Somit können die Mengen an Wasserstoff, die für die kommenden Jahre benötigt werden (je nach Studie 4 TWh bei 1 GW installierter Elektrolyseleistung bis zu 20 TWh bei 5 GW installierter Elektrolyseleistung bis 2030) zumindest in Teilen in Deutschland selbst produziert werden. Bei der Skalierung der Anlagen kommen zwei Ansätze in Frage: Einerseits werden einzelne Anlagen größer, andererseits wird die Anzahl kleiner und mittelgroßer Anlagen erhöht. Grundsätzlich wird die Skalierung in beiden Dimensionen benötigt werden, um die enorme Nachfrage nach Grünem Wasserstoff bedienen zu können. Dieses Vorhaben fokussiert hierbei auf die skalierbare Auslegung und Produktion kleiner bis mittelgroßer Anlagen. So ist es das Ziel des Vorhabens, ein Konzept zu entwickeln, anhand dessen Elektrolyseure im Leistungsbereich von 500 kW bis 5 MW in eine regionale Energieversorgung eingebracht werden können. Hierbei gilt es, die entstehenden Stoffströme integriert zu betrachten, um so dezentrale und nachhaltige Wasserstoffkonzepte in die Realität zu überführen. Um dieses Konzept skalierbar zu entwickeln und an weiteren Standorten ausrollen zu können, muss ein grundsätzliches Vorgehen entwickelt werden, anhand dessen eine modularisierbare Anlage auf den jeweiligen Anwendungsfall ausgelegt werden kann.
| Origin | Count |
|---|---|
| Bund | 847 |
| Land | 47 |
| Zivilgesellschaft | 4 |
| Type | Count |
|---|---|
| Ereignis | 8 |
| Förderprogramm | 795 |
| Gesetzestext | 1 |
| Lehrmaterial | 1 |
| Text | 50 |
| Umweltprüfung | 13 |
| unbekannt | 30 |
| License | Count |
|---|---|
| geschlossen | 88 |
| offen | 808 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 863 |
| Englisch | 137 |
| Resource type | Count |
|---|---|
| Datei | 15 |
| Dokument | 39 |
| Keine | 531 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webseite | 339 |
| Topic | Count |
|---|---|
| Boden | 497 |
| Lebewesen und Lebensräume | 708 |
| Luft | 399 |
| Mensch und Umwelt | 898 |
| Wasser | 287 |
| Weitere | 864 |