API src

Found 2396 results.

Similar terms

s/energiespeiche/Energiespeicher/gi

Reversible metallische Energiespeicher zur nachhaltigen Erzeugung von Wasserstoff

Next generation rechargeable and sustainable Zinc-Air batteries, ZABAT - Next generation rechargeable and sustainable Zinc-Air batteries

Turbomaschinen für die Transformation in das integrierte Energiesystem der Zukunft, Teilvorhaben: 3.1a, 3.2a, 3.4a und 4.2b - Flexibilität im Betrieb

Klimaforschungsplan KLIFOPLAN, Potentiale für eine weitergehende Elektrifizierung (PowEr)

Aus Gründen der Energieeffizienz, Ressourcenschonung und Treibhausgas-Minderung zeichnet sich ab, dass die Verkehrsarten möglichst elektrifiziert werden sollten. Sofern das nicht möglich ist, muss der Endenergiebedarf durch andere Kraftstoffe gedeckt werden, die langfristig treibhausgasneutral her- und bereitgestellt werden müssen. Batterien wurden in den letzten Jahren deutlich leistungsfähiger (gravimetrische und volumetrische Energiedichte) und werden auch absehbar noch besser und günstiger. Zukünftig sollten dadurch weitere Verkehrsmodi batterieelektrisch betrieben werden können und andere noch umfassender als bisher. Dies ermöglicht geringere Bedarfe an anderen Endenergieträgern und einen geringeren Energiebedarf. Im Vorhaben sollen die jetzigen und insbesondere zukünftigen Möglichkeiten der Batterie-Technik in Anwendungen des Verkehrs detailliert untersucht werden. Die verkehrsträgerseitigen Anforderungen der jeweiligen charakteristischen Segmente der Verkehrsarten (z.B. Fähren, Binnenschiffe, Zweiräder, Linienbusse) an die Energieversorgung müssen dazu detailliert aufgeschlüsselt werden, um diese anschließend ggf. wieder clustern zu können. Welche Arten von Energiespeichern werden dafür benötigt bzw. jetzt schon entwickelt, welche Kostenentwicklungen sind zu erwarten? Batterietechnisch sind alle Ansätze zu identifizieren, die in den nächsten 2 bis 3 Dekaden aus heutiger Sicht relevant werden könnten. Die Beurteilung erstreckt sich auch auf die Risiken der Technik und die Kritikalität von Rohstoffen. Für die auch zukünftig nicht realistisch elektrifizierbaren Verkehrsträger wäre zu untersuchen, welche Energieträger (PtG-H2, PtG-Methan, PtL) und Antriebe dann, unter Berücksichtigung der Energieeffizienz, Ressourcen und THG-Minderung, als geeignete Alternative erscheinen. Diese Arbeiten sind die Grundlage für eine Abschätzung des zukünftigen Endenergie- und Primärenergiebedarfs im Verkehr, was in drei Szenarien ermittelt werden soll.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme, TVH: Speichersystem (EEW - Speichersystem)

Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

Energieoptimiertes Reallabor Jena mittels in Echtzeit skalierbarer Energiespeicher, Teilvorhaben: Smart Living und spezifisches Nutzerverhalten im Virtuellen Kraftwerk

JenErgieReal versteht sich als 'Blaupause' für die zukünftig ganzheitliche Versorgung mit elektrischer und thermischer Energie sowie der Integration der Mobilität als Bindeglied. Dabei werden die Haupttreiber des Energieverbrauchs Verkehr, Industrie, Gewerbe und Wohnen sektorenübergreifend betrachtet. JenErgieReal wird als Reallabor der Energiewende die für die deutsche Energiepolitik wesentlichen systemischen Herausforderungen in einem klar umrissenen Großvorhaben exemplarisch angehen und die Rolle der Infrastrukturbetreiber im Energiewendeprozess verdeutlichen. JenErgieReal hat Pioniercharakter für die Transformation des Energiesystems und widmet sich Forschungsfragestellungen, die eine Schlüsselrolle bei der Umsetzung der Energiewende einnehmen. Die Demonstration der Ergebnisse erfolgt als Reallabor in der Stadt Jena. Das primäre Ziel des Teilprojektes 3 (TP 3) im Verbundprojekt JenErgieReal liegt in der Umsetzung der mit den Projektpartnern entwickelten wissenschaftlichen und technischen (Wohn-) Quartierspeicherlösungen, ausgehend von der kleinsten Zelle Wohnung zum smarten Quartier. Durch den Einsatz von Smart-Home-Komponenten werden die Wohnungen Teil des Virtuellen Kraftwerkes. Es sollen neue Prozesse und Formen des Zusammenlebens für eine Verbesserung der Lebensqualität und attraktiven Lebensraumgestaltung entwickelt und erprobt werden. Das Wohnen soll einfacher und angenehm erlebbar und ein langes (eigenständiges) Wohnen durch smarte Anwendungen ermöglicht werden. Somit soll nachhaltig die Wohn- und Lebensqualität der Bewohner verbessert, eine Senkung der Betriebskosten durch die Reduzierung der Stromverbräuche, z.B. Photovoltaik am Gebäude (Mieterstrom) und der Heizkosten sowie eine zukunftssichere Ausstattung der Wohnungen und nachhaltige Immobilienbewirtschaftung unter Berücksichtigung von sozialen, technischen, ökonomischen und ökologischen (CO2-Einsparung) Parametern erreicht werden.

Elektroniksysteme mit besonders niedrigem Energieverbrauch für das Internet der Dinge, Elektroniksysteme mit besonders niedrigem Energieverbrauch für das Internet der Dinge - LoLiPoP IoT

Entwicklung von porösen Kohlenstoffen als Kathodenmaterial für Li-S Batterien, ALISA - Entwicklung von porösen Kohlenstoffen als Kathodenmaterial für Li-S Batterien

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben Universität Dresden: Kommunikationstechnologien

Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, Microgrid, entworfen. Im Anschluss werden Mobilitätsalgorithmen für die Nutzung von batterieelektrischen Fahrzeugen als mobile Energiespeicher entwickelt, die temporäre Selbstversorgung von Teilnetzen ermöglichen. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet und anhand des dadurch erarbeiteten Know-hows weiter verbessert. Das übergeordnete Ziel des Projektes DymoBat ist die Entwicklung von marktfähigen Lösungen für die zukünftige Stromnetzverwaltung zur Nutzung von verteilten Energieressourcen auf Basis der Anwendung von 5G-Technologien.

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung

Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, Microgrid, entworfen. Im Anschluss werden Mobilitätsalgorithmen für die Nutzung von batterieelektrischen Fahrzeugen als mobile Energiespeicher entwickelt, die temporäre Selbstversorgung von Teilnetzen ermöglichen. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet und anhand des dadurch erarbeiteten Know-hows weiter verbessert. Das übergeordnete Ziel des Projektes DymoBat ist die Entwicklung von marktfähigen Lösungen für die zukünftige Stromnetzverwaltung zur Nutzung von verteilten Energieressourcen auf Basis der Anwendung von 5G-Technologien.

1 2 3 4 5238 239 240