<p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br>Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.<p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p></p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der <a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der<strong>Photovoltaik</strong>(PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei<strong>Windenergie</strong>zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der<a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a> ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>
Die zunehmende Integration von dezentralen Erzeugungsanlagen (DEA) und Ladestationen für Elektrofahrzeuge führt zu geänderten Leistungsflüssen im Netz und zur Überlastung der Leitungen. Aus-gehend von den kommenden Herausforderungen, wurde das Projekt AC2DC gestartet. Der Fokus liegt auf der Ertüchtigung der Stromnetzinfrastruktur mit DC-Netzen, sowie deren Ausrichtung auf die Einspeisung einer zunehmenden Anzahl DEA und leistungsstarker Verbraucher. Hierzu sind in Phase I ein innovativer DC/DC-Wandler entwickelt und neue Konzepte zur Betriebsführung elektrischer DC-Netzen entworfen worden. In der Phase II werden die Ergebnisse aus Phase I in einem Feldversuch verifiziert. Hierfür werden ein DC/DC-Wandler und ein MMC aufgebaut und getestet. Ein Monitoring-System zur Zustandsüberwachung der Kabel wird entwickelt und zukünftige Materialien für DC-Muffen und Endverschlüssen werden erforscht. Zum anderen werden notwendige Schutzalgorithmen entwickelt und der Einfluss eines DC-Netzes auf die Stromqualität untersucht.
Windkraftanlagen Saarland, Anlagen, die die kinetische Energie des Windes in elektrische Energie umwandelt und in das Stromnetz einspeist. Attribute: RW, HW: Koordinaten des Rechtswertes und Hochwertes; NAMEN: Namen des Windparks; SACHSTAND: UVP Vorprüfungsverfahren (UVP=Umweltverträglichkeitsprüfung), laufendes Genehmigungsverfahren, genehmigte Anlage; LEISTUNG: Angabe in Megawatt-MW; NABENHOEHE: Höhe der Gondel über dem Turmfuß; GESAMTHOEH: Rotorblattlänge plus Nabenhöhe ergibt die Gesamthöhe.
Für die öffentliche Beleuchtung ist die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt – Abteilung Tiefbau – verantwortlich. Die Stromnetz Berlin GmbH führt im Auftrag der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt den Betrieb, die Wartung, die Instandhaltung und die Schadensbeseitigung der öffentlichen Beleuchtung einschließlich der beleuchteten Verkehrszeichen und Verkehrseinrichtungen durch. Sollten Sie Störungen bzw. Schäden an den öffentlichen Beleuchtungsanlagen Berlins feststellen, wenden Sie sich bitte an die Stromnetz Berlin GmbH (siehe Kontaktangaben). Die Pflicht zur Beleuchtung öffentlicher Straßen ist im Berliner Straßengesetz (BerlStrG) festgeschrieben. Nach § 7 Abs. 5 Satz 1 BerlStG sind die öffentlichen Straßen in ihrer Gesamtheit zu beleuchten, soweit es im Interesse des Verkehrs und der Sicherheit erforderlich ist. Damit ist die Beleuchtung Bestandteil der Straßenbaulast Berlins. Zur öffentlichen Beleuchtung zählen die Beleuchtungsanlagen an Straßen und Plätzen, Anstrahlungen und beleuchtete Verkehrszeichen (z.B. an Fußgängerüberwegen). Die öffentliche Beleuchtung umfasst rund 207.500 Elektroleuchten und rund 17.500 Gasleuchten im Straßenland Berlins (Stand 05/2025). Die Zuständigkeit für die Beleuchtung der Bundesautobahn liegt seit dem 01.01.2021 bei der Autobahngesellschaft des Bundes. Das Handbuch zum Lichtkonzept Berlin ist auf der Seite der Senatsverwaltung für Stadtentwicklung, Bauen und Wohnen bei den Regelwerken zur Stadtgestaltung zu finden. Die Vorgaben für das Anbringen von Wahlwerbung an Masten der öffentlichen Beleuchtung sind hier zu finden. Weitere Informationen Bild: Linus Lintner Beleuchtung auf dem Bebelplatz Weitere Informationen Bild: Linus Lintner Beleuchtung im Görlitzer Park Weitere Informationen Bild: Linus Lintner Pilotprojekt Hasenheide Weitere Informationen Bild: Linus Lintner Pilotprojekt Springpfuhlpark Weitere Informationen Bild: Linus Lintner Umrüstung der Gasleuchten in Lichtenrade Weitere Informationen Bild: Linus Lintner Umrüstung der Gasleuchten in Charlottenburg, Hermsdorf, Moabit, Wedding und Wilmersdorf Weitere Informationen Bild: SenMVKU Umrüstung der Gasleuchten in Gesundbrunnen und Rudow Weitere Informationen Bild: Kardorff Ingenieure Lichtplanung GmbH Besondere Projekte Weitere Informationen Bild: Linus Lintner Fragen und Antworten zur Gasbeleuchtung Weitere Informationen
Im Projekt MEDAILLON wird ein neuer offener meteorologischer Datensatz erstellt, welcher sich als Standarddatensatz für Anwendungen in der Energiewirtschaft etablieren soll. Der Datensatz soll Deutschland abdecken, eine räumliche Auflösung von 250m aufweisen und Zeitreihen ausgewählter meteorologischer Parameter (Wind, Globalstrahlung, Temperatur usw.) für einen Zeitraum von 15 Jahren in 15-minütiger Auflösung bereitstellen. Zusätzlich wird die Möglichkeit zur Integration des Datensatzes in einen europäischen Wetterdatensatz sowie eine Bereitstellung von Informationen zur zeitlichen und räumlichen Unsicherheit angestrebt. Durch eine frühzeitige Nutzereinbindung wird die Entwicklung des Datensatzes entsprechend der Nutzeranforderungen sichergestellt. Für die technische Umsetzung werden neue Ansätze aus dem Bereich der Wettermodell-Reanalyse-Ensembles, aber auch die Anwendung von strömungsmechanischen, statistischen und Machine-Learning-Verfahren eingesetzt. Das Fachgebiet Energiemanagement und Betrieb elektrischer Netze der Universität Kassel hat primär das Ziel, Methoden zu entwickeln, um in Zusammenarbeit mit dem Fraunhofer IEE ein Multi-Modell- Ensemble zu erarbeiten und die Unsicherheit der Modelldaten räumlich und zeitlich abzubilden. Für die mit besonders großen Unsicherheiten behafteten Windklimata soll eine geografisch differenzierte Unsicherheitsabschätzung durchgeführt werden. Für die zeitreihen-basierte Unsicherheitsbestimmung sollen einerseits Reanalysen verschiedener Wettermodelle sowie auch die neue ICONbasierte Ensemble-Reanalyse hinsichtlich deren Streuung in Raum und Zeit untersucht werden. Außerdem sollen maschinelle Lernverfahren eingesetzt werden, um die Unsicherheit auf Basis von Messdaten zu erlernen. Die für den Wind erarbeiteten Ansätze sollen in Teilen auch auf die anderen meteorologischen Größen übertragen werden. Für beide Ansätze soll abschließend ein Verfahren entwickelt werden, um die Unsicherheit in die Fläche zu projizieren.
Ziel des Vorhabens ist es, die Auswirkungen des Klimawandels, mit Fokus Extremkälte, -hitze und Dürre, auf die Netzbewirtschaftung zu benennen, die technisch-wirtschaftlich optimalen Gegenmaßnahmen zu identifizieren, Hürden bei der Umsetzung herauszustellen sowie in Netzrisikokarten zu markieren, in welchen Risikogebieten die Umsetzung welcher Handlungsoptionen sinnvoll ist. Übergeordnetes Ziel des Gesamtvorhabens ist es, auf Basis der erhaltenen Ergebnisse möglichst allgemeingültige Erkenntnisse und Handlungsempfehlungen auch für nicht am Projekt beteiligte Verteilnetzbetreiber abzuleiten. Diese können die erhaltenen Handlungsempfehlungen als Hilfestellung bei der Anpassung bestehender Planungs- und Betriebsgrundsätze nutzen, durch die die gesamtwirtschaftlichen Auswirkungen der Klimafolgen sowohl für die Betreiber als auch für die Nutzer der Energieversorgungsnetze minimiert werden können. Der Fokus des vorliegenden Teilvorhabens von EWR liegt auf der Ableitung von Maßnahmen zum hinreichenden Schutz der eigenen Verteilnetze vor Umwelteinflüssen mit Fokus Extremkälte, -hitze und Dürre, die im Zuge des andauernden Klimawandels zunehmen. Neben den generell zunehmenden Umwelteinflüssen (z.B. genereller Temperaturanstieg) sollen dabei vor allem die Auswirkungen von Extremwettereignissen (im Besonderen der Kategorien Extremkälte, -hitze und Dürre) auf die Verteilnetze der EWR analysiert und optimale Handlungsoptionen als Gegenmaßnahmen identifiziert werden.
Heute wird das Stromnetz durch Synchrongeneratoren (SG) in konventionellen Großkraftwerken geformt und stabilisiert. Dabei gewährleistet die in den rotierenden Massen der Erzeuger gespeicherte kinetische Energie den Ausgleich von elektrischer Last und Erzeugung. Diese sog. Momentanreserve sorgt für die Stabilisierung des Netzes ohne Regelungseingriff. Durch den Kohle- und Kernkraftausstieg werden konventionelle Großkraftwerke zukünftig durch dezentrale und volatile Erzeugungsanlagen ersetzt. Dabei ist zu beachten, dass erneuerbare Erzeuger wie PV und Wind über Stromrichter an das Netz angebunden sind. Damit nimmt die Durchdringung des Netzes mit stromrichterbasierten Technologien zu, während die SG stetig aus dem Netz verdrängt werden. Folglich führt das Abschalten konventioneller Einheiten zu Stabilitätsproblemen, wenn das heutige Regelverhalten der Stromrichter beibehalten wird. Daher sind neuartige Netzregelkraftwerke (INK) zu entwickeln, welche ihre Energie aus nachhaltigen Quellen beziehen. Hierfür arbeiten zwei Professuren der TU Dresden, die Professur für Leistungselektronik (LE) und die Professur für Energieverfahrenstechnik (EVT) in einem Teilprojekt zur Entwicklung genau eines solchen neuartigen wasserstoffbasierten Kraftwerks zusammen. Schwerpunkte sind neben der Spezifikation von Komponenten und Prozessen der Entwicklung einer angepassten Kraftwerkssteuerung, die Erstellung eines Prozessmanagementansatzes für das INK sowie die Entwicklung einer neuen Leistungselektronik. Diese Arbeiten umfassen die gezielte Modellierung von Stoff- und Energieströmen seitens EVT, Analysen zum Inselnetzbetrieb und Schwarzstartfähigkeit, zur Optimierung der Netzdienstleistung und zu Stabilitätsuntersuchungen durch LE. Weitere Schwerpunkte sind Analysen zur Rückgewinnung und -reintegration von Stoff- und Energieströmen, die Zusammenarbeit bei der Entwicklung eines Digitalen Zwillings sowie der Bau, die Inbetriebnahme und der wissenschaftliche Forschungsbetrieb des INK.
Vorhabensziel des Projekts ist die Überführung des im Vorgängervorhaben 'ErdEis II' umgesetzten Erdeisspeichers in den Vollbetrieb, das wissenschaftliche Monitoring und Benchmarking sowie die Entwicklung eines District Energy Management Systems (DEMS). Hierzu sollen verschiedene Betriebsmodi getestet, die Betriebsweise aufbauend auf den Ergebnissen optimiert, der Einfluss verschiedener Parameter modellgestützt nachvollzogen und das Kalte Nahwärmesystem mit Erdeisspeicher bestmöglich für die Gesamtsystemoptimierung mittels DEMS genutzt werden. Im zukünftigen Energiesystem wird nicht mehr allein auf Energieeffizienz respektive End- und Primärenergiebedarf optimiert werden können. Vielmehr spielt Flexibilität eine zunehmende Rolle, die schließlich gekoppelt an die Verfügbarkeit erneuerbarer elektrischer Energie den tatsächlichen CO2-Ausstoß bestimmen wird. Inzwischen sind Schnittstellen verfügbar, die über Vorhersagen zur CO2-Intensität des Stromnetzes eine entsprechende Optimierung ermöglichen. Diese Optimierung hat im Gesamtkonzept nicht nur wärme- bzw. kälteseitig zu erfolgen, sondern ganzheitlich die Bedarfe und Flexibilitäten des Kalten Nahwärmenetzes, der Haushaltsstromverbräuche, Mobilitätsbedarfe und Eigenenergieerzeugung miteinzuschließen. So kann ein Gesamtoptimum erreicht und Optimierungen von Teilsystemen, die zu Lasten der Gesamtemissionen gehen, vermieden werden. Entsprechend müssen auch Bewertungs- und Benchmarkingmethoden passend weiterentwickelt werden.
Origin | Count |
---|---|
Bund | 3583 |
Kommune | 3 |
Land | 170 |
Zivilgesellschaft | 13 |
Type | Count |
---|---|
Ereignis | 13 |
Förderprogramm | 3125 |
Gesetzestext | 3 |
Text | 464 |
Umweltprüfung | 57 |
unbekannt | 97 |
License | Count |
---|---|
geschlossen | 270 |
offen | 3169 |
unbekannt | 320 |
Language | Count |
---|---|
Deutsch | 3642 |
Englisch | 501 |
Resource type | Count |
---|---|
Archiv | 308 |
Bild | 1 |
Datei | 320 |
Dokument | 448 |
Keine | 1542 |
Multimedia | 1 |
Unbekannt | 1 |
Webdienst | 6 |
Webseite | 1805 |
Topic | Count |
---|---|
Boden | 1362 |
Lebewesen und Lebensräume | 1354 |
Luft | 1523 |
Mensch und Umwelt | 3753 |
Wasser | 734 |
Weitere | 3643 |