Umweltsubstanzen können bei Mensch und Tier das Hormonsystem beeinflussen, indem sie auf den Metabolismus der Hormone einwirken. So wurde kürzlich gezeigt, dass zinnorganische Verbindungen wie Tributylzinn bei Schnecken und Fischen offenbar durch eine Hemmung der Aromatase den Metabolismus der Sexualsteroidhormone stören und so schwere Schäden hervorrufen. Ziel des geplanten Vorhabens ist es, beim Menschen mit den von uns entwickelten Testverfahren (DFG Kl 524/4-1) zunächst den Einfluss der ubiquitär vorkommenden zinnorganischen Verbindungen auf Schlüsselenzyme des Sexualhormonstoffwechsels, wie die Aromatase, die 5a-Reduktase und die 17b-Hydroxysteroid-Dehydrogenase zu untersuchen. Auf molekularer Ebene soll in Gewebe-Homogenaten und -Schnitten der Einfluss auf die Enzymaktivität und in Zellkulturen auf die Genexpression (Quantifizierung der mRNA) gemessen werden. Ferner soll in menschlichem Gewebe der Gehalt an zinnorganischen Verbindungen bestimmt werden. Diese Untersuchungen werden zeigen, inwieweit auch beim Menschen Umweltsubstanzen in den Steroidhormonstoffwechsel eingreifen. Dies sind grundlegende Fragestellungen, zu denen beim Menschen bisher keine Befunde vorliegen.
Schwefel (S) ist ein essentielles Nährelement für Mikroorganismen und Pflanzen. Eine ausreichende S-Versorgung ist daher entscheidend für die Erhaltung von Ökosystemfunktionen und -produktivität. Ziel dieses Projekts ist es, zu testen, ob die Kombination aus Ökosystem (Grünland vs. Wald) und Landnutzungsintensität (d.h. Einträge und Export von S) mit unterschiedlichen Mechanismen des S-Recyclings in Böden gekoppelt ist, wodurch letztlich der Artenreichtum und die Artenzusammensetzung an den jeweiligen Standorten der Biodiversitäts-Exploratorien beeinflusst wird. Im Speziellen nehmen wir an, dass (i) die S-Vorräte und die S-Verfügbarkeit für jedes Ökosystem durch die Landnutzungsintensität und die S-Speicherkapazität innerhalb des Bodenprofils bestimmt werden; dass (ii) Ökosysteme mit geringer Landnutzungsintensität durch ein intensiveres S-Recycling und damit auch eine höhere S-Nutzungseffizienz im Vergleich zu Standorten mit intensiver Bewirtschaftung gekennzeichnet sind; und dass (iii) eine Abnahme der Landnutzungsintensität in Grünlandböden zu einem effizienteren S-Recycling führen wird. Da für die Biodiversitäts-Exploratorien bisher nur wenige Daten zu Schwefel erhoben wurden, werden in diesem Projekt zunächst die aktuellen S-Vorräte und die S-Verfügbarkeit im Bodenprofil entlang der Landnutzungsgradienten bestimmt. Anschließend werden wir das mikrobielle S-Recycling und die Enzymaktivität sowie Isotopenverhältnisse (delta 34S und delta 18O-SO4) analysieren, um standortspezifische Unterschiede in der S-Nutzungseffizienz und dem S-Recycling zu identifizieren. Über die Dauer des Projekts werden wir weiterhin beobachten, wie sich diese Indikatoren für S-Verfügbarkeit und S-Recycling nach einer Landnutzungsänderung in Grünland verändern. In Zusammenarbeit mit anderen Partnern aus diesem Schwerpunktprogramm wird das Projekt somit zu einem besseren Verständnis beitragen, welche Faktoren die Biodiverisität an den Standorten der Exploratorien beeinflussen.
Insektenkalamitäten können Menge und chemische Zusammensetzung von gelöster und partikulärer organischer Substanz (DOM, POM) innerhalb des Transfers zwischen Baumkronen und Boden verändern. Dies kann mikrobielle Aktivitäten in der Phyllosphäre und im Boden beeinflussen, was zu veränderten C und N Umsätzen führt. Projektziel ist, die C und N Verbindung zwischen Kronenraum und Boden in 60-jährigen Kiefernwäldern (Pinus silvestris L.) unter Insektenbefall zu untersuchen. Um die Hypothese zu testen, dass Massenvermehrung von herbivoren Insekten den C und N Umsatz in Kiefernwäldern steigert, wird (1) der Eintrag quantifiziert: DOM und POM Flüsse vom Kronenraum in den Boden, (2) Mechanismen bewertet: Effekte durch leicht- und schwerabbaubare Verbindungen in DOM und POM (Phenole, Lipide, Kohlenhydrate, Proteine, freie Aminosäuren) auf Kronen- und Bodenmikroorganismen (mikrobielle Biomasse, Enzymaktivitäten), sowie biogeochemische Prozesse (C-Mineralisierung) im Boden und (3) Konsequenzen quantifiziert: Treibhausgasemissionen (THG) und flüchtige organische Verbindungen (VOCs) vom Boden. Veränderte C und N Pfade werden über neu entwickelte Algorithmen modelliert, um langfristige Auswirkungen auf ökosystemarer Ebene abzuschätzen. Damit wird der Kurzschluss zwischen erhöhter DOM und POM Produktion im Kronenraum durch Herbivore einerseits, mit C und N Einträgen im Boden und Umsatzprozesse andererseits analysiert und modelliert.
Sauerstoffmangel im Wurzelbereich ist einer der wichtigsten abiotischen Stressfaktoren, der Wachstum und Konkurrenz von Baumarten in Waldökosystemen bestimmt. Daher ist das Verständnis von Adaptationsmechanismen toleranter Pflanzen von großer ökologischer und ökonomischer Bedeutung. Physiologische Anpassungsstrategien umfassen die Vermeidung der Akkumulation phytotoxischer Verbindungen, modifizierte Genexpression, sowie die Aufrechterhaltung der Energieversorgung. Im vorliegenden Projekt sollen unter Einsatz molekularbiologischer Techniken die ökophysiologischen Grundlagen der Überflutungstoleranz der Baumart Pappel näher untersucht werden. Hierzu sollen transgene Pappellinien mit organspezifisch modulierter Expression der Wurzel-Pyruvatdecarboxylase (PDC), Blatt-Alkoholdehydrogenase (ADH) und Blatt-Aldehyddehydrogenase (ALDH) erzeugt werden. Die Genexpression dieser Pappeln soll molekular (mRNA und Western) und physiologisch (Enzymaktivitäten) charakterisiert und die isolierten Gene sequenziert werden. In einem vergleichenden physiologischen Ansatz soll durch Studien an überflutungstoleranten (Pappel, Stieleiche) und -sensitiven Spezies (Buche, Traubeneiche) der Energie-, C-, und N-Haushalt der Bäume unter Sauerstoffmangel charakterisiert werden.
Die Ergebnisse eines vorangegangenen DFG-Projektes lieferten Hinweise darauf, dass die verstärkte Abgabe von Citrat und Protonen unter P-Mangelbedingungen auf einer erhöhten Akkumulation von Citronensäure im Wurzelgewebe beruht. Diese verstärkte Citratakkumulation ist einerseits die Folge einer erhöhten Biosyntheserate, beruht andererseits aber wahrscheinlich auch auf einem durch P-Limitierung der Atmungskette verminderten Citratumsatz im Citratcyklus. Zur Prüfung dieser Hypothese sollen P-Mangel induzierte Veränderungen der am Citratumsatz beteiligten Stoffwechselwege untersucht werden, um so Hinweise auf die an der Regulation beteiligten Schlüsselreaktionen zu erhalten. Im einzelnen sind Messungen der Wurzelatmung, des Pools an Adeninnukleotiden, des Redoxstatus (NADH/NAD-Verhältnis), 14C markierter Intermediärprodukte des Citratstoffwechsels und der an den Umsetzungen beteiligten Enzymaktivitäten, sowie Untersuchungen zur Citratakkumulation nach gezielter Applikation von Respirationshemmstoffen (KCN, SHAM) geplant. Die Wirksamkeit verschiedener Anionenkanalinhibitoren lieferte erste Hinweise, dass die Citratabgabe durch einen Anionenkanal im Plasmalemma erfolgt. Nach Isolierung von Protoplasten aus dem Proteoidwurzelgewebe soll über Patch-Clamp Messungen versucht werden, die Beteiligung eines Anionenkanals direkt nachzuweisen.
Zur Ermittlung moeglicher Auswirkungen von Stoffeintraegen auf Gruenlandboeden werden vergleichende Untersuchungen auf unterschiedlich geduengten Freilandflaechen sowie in Open-top-Kammern, die mit gefilterter bzw. ungefilterter Umgebungsluft versorgt werden, durchgefuehrt. Neben der Naehr- und Schadstoffdynamik wird die Entwicklung der mikrobiellen Biomasse erfasst. Daneben wird die Aktivitaet einiger Enzyme bestimmt.
Fragestellung: Welches Risiko hinsichtlich der Schwermetallbelastung der Nahrungskette geht von ehemals durch Klaerschlammduengung hoch belasteten Flaechen aus? Versuchsziel: Auf den Flaechen des langjaehrigen Klaerschlammversuches des Instituts fuer Pflanzenernaehrung (330) der Universitaet Hohenheim mit z.T. stark ueberhoehten Schwermetallgehalten im Oberboden wird der Einfluss eines 'konservierenden' und eines 'humuszehrenden' Ackernutzungssystems auf: 1. Schwermetallmobilitaet und -aufnahme und 2. funktionelle Diversitaet von Bodenmikroorganismen und andere bodenmikrobiologische Parameter (u.a. Enzymaktivitaeten) untersucht.
Allochthones organisches Material, wie Falllaub, ist eine zentrale Nährstoff- und Energiequelle für aquatische Ökosysteme. Diese werden durch die Aktivität von Mikroorganismen, im Speziellen aquatische Pilze, für das aquatische Nahrungsnetz zugänglich. Die Pilze tragen zum Einen durch die Produktion von Enzymen direkt zum Falllaubabbau bei. Zum anderen erhöhen sie die Konzentration an Lipiden und Proteinen auf dem Laub und stimulieren somit den Fraß von Zerkleinerern, wodurch sie indirekt zum Laubabbau beitragen. Die Zusammensetzung der Pilzgemeinschaft wird jedoch durch Stressoren anthropogenen Ursprungs beeinflusst, wodurch auch die Fähigkeit der Gemeinschaft beeinträchtigt wird, diese beiden Funktionen wahrzunehmen. In Anlehnung an das Konzept der Verschmutzungsinduzierten Toleranz einer Gemeinschaft, werden aufgrund von Stressoren sensitive durch tolerante Spezies ersetzt, wodurch sich die Toleranz der Gemeinschaft erhöht. Diese erhöhte Toleranz kann stressor-spezifisch sein. In diesem Zusammenhang untersucht das vorliegende Projekt die Toleranz von unbeeinflussten Gemeinschaften relativ zu Gemeinschaften, welche entweder an Mischungen von organischen Mikroverunreinigungen und Nährstoffen (Abwassereinleitung) oder an Fungizide (Weinbau) angepasst sind. Die Effizienz dieser Gemeinschaften Falllaub abzubauen, wird unter zunehmenden Konzentrationen von Nährstoffen und Fungiziden in einem voll-faktoriellen laborbasiertem Testverfahren untersucht. Durch die gleichzeitige Betrachtung der Eigenschaften einzelner Pilzarten (z.B. Enzymaktivität, Amino- und Fettsäurenzusammensetzung) strebt BIO2FUN an die zugrundeliegenden Mechanismen aufzudecken. Darüber hinaus können erste Abschätzungen zu möglichen 'bottom-up' gerichteten Auswirkungen auf die nächst höhere trophische Ebene, den Zerkleinerern, abgeschätzt werden. Diese werden durch Fütterungsexperimente, welche physiologische Reaktionen der Zerkleinerer untersuchen, verifiziert. Damit kann das vorliegende Projekt als Meilenstein für der Interpretation von zukünftigen Studien betrachtet werden, die sich der Rolle aquatischer Pilze in heterotrophen Nahrungsnetzen widmen.
Außer dem bekannten Treibhausgas Kohlendioxid (CO2) existieren weitere stark klimawirksame Spurengase biologischen Ursprungs, z.B. Lachgas (N2O) und Methan (CH4), die mikrobiell im Boden produziert (N2O, CH4) oder im Falle des Methans auch verbraucht (oxidiert) werden. Die steigende atmosphärische CO2-Konzentration kann sich über die Pflanzen in vielfacher Weise auf die bodenmikrobiellen, Spurengasproduzierenden Prozesse auswirken. So ist beispielsweise nachgewiesen worden, dass der Wasserverbrauch der Pflanzen unter erhöhtem CO2 häufig sinkt und die Abgabe von leicht zersetzbarem Kohlenstoff an den Boden (Wurzelexudation) steigt. Beides könnte die Denitrifikation und damit die N2O-Produktion begünstigen, ebenso die Methanproduktion, wenn im Boden anaerobe Bedingungen (z.B. durch Überflutung) eintreten. Steigende Bodenfeuchte würde zugleich die Sauerstoff-abhängige Methanoxidation im Oberboden hemmen. Zu diesem Thema existieren bislang weltweit nur Kurzzeit- und Laborstudien. Im hier vorgestellten Projekt werden im Freilandexperiment die Langzeitauswirkungen steigender atmosphärischer CO2-Konzentrationen über das System Pflanze-Boden auf die Flüsse der klimawirksamen Spurengase N2O und CH4 in einem artenreichen Dauergrünland untersucht. Hierzu gelangt ein im Institut für Pflanzenökologie neuentwickeltes Freiland-CO2-Anreicherungssystem (FACE) zur Anwendung, bei dem die CO2-Konzentration in drei Anreicherungsringen seit Mai 1998 um etwa 20 Prozent gegenüber den drei Kontrollringen erhöht wurde. Über die Jahresbilanzierungen der Spurengasflüsse sowie über begleitende Prozessstudien soll geklärt werden, wie und auf welche Weise erhöhtes CO2 auf die N2O- und CH4-Spurengasflüsse rückwirkt. Die ersten Ergebnisse zeigen deutlich, dass in einem etablierten artenreichen Ökosystem wie dem untersuchten Feuchtgrünland zuerst die unterirdischen Prozesse auf die steigenden CO2-Konzentrationen reagierten (Bestandesatmung). Die oberirdische Biomasse zeigte erst nach etwa 1,5 Jahren der CO2-Anreicherung einen signifikanten Zuwachs gegenüber den Kontrollflächen. Im Jahr 1997, vor dem Beginn der CO2 -Anreicherung, waren sowohl die N2O-Emissionen als auch die CH4 Flüsse auf den (späteren) Anreicherungs- und den Kontrollflächen fast identisch. Seit Beginn der Anreicherung hingegen sind die N2O-Emissionen vor allem während der Vegetationsperiode dramatisch angestiegen: auf 278 Prozent der Emissionen der Kontrollflächen. Die Methanoxidation war rückläufig unter erhöhtem CO2: Mittlerweile oxidieren die CO2 Anreicherungsflächen 20 Prozent weniger CH4 als die Kontrollflächen (Jahr 2000), wobei auch hier der größte Unterschied während der Vegetationsperiode auftrat. Eine erhöhte Bodenfeuchte kommt als Erklärung nicht in Frage, da sich diese nicht geändert hat.
In the frame of the project microbial turnover processes of phosphorous shall be investigated in forest soils and drivers for the corresponding populations as well as their activity pattern shall be described. Furthermore microbial transport and uptake systems for phosphorous should be characterized to understand the competition between plants and microbes for phosphorous in more detail, in relation to the availability of phosphorous and other nutrients. Therefore it is planned to investigate different soil compartments with different nutrient amounts (litter layer - rhizosphere - bulk soil). To reach the described goal molecular metagenomic methods will be used to characterize the structure and function of microbial communities as well as to describe the regulation of selected important pathways. In addition quantitative real time PCR and enzymatic measurements will be used to describe the abundance and activity of the corresponding populations and to describe their relevance for P turnover in the different soil compartments under investigation. With this we hope to reconstruct mainly the microbial phosphorous cycle and give important data to improve the model development of P dynamics in forest soils.
| Origin | Count |
|---|---|
| Bund | 451 |
| Type | Count |
|---|---|
| Förderprogramm | 451 |
| License | Count |
|---|---|
| offen | 451 |
| Language | Count |
|---|---|
| Deutsch | 417 |
| Englisch | 84 |
| Resource type | Count |
|---|---|
| Keine | 255 |
| Webseite | 196 |
| Topic | Count |
|---|---|
| Boden | 333 |
| Lebewesen und Lebensräume | 388 |
| Luft | 192 |
| Mensch und Umwelt | 450 |
| Wasser | 212 |
| Weitere | 451 |