Diese Karte zeigt Ihnen das technisch-theoretische Potenzial für Luft- und Erdwärmepumpen.
Die Potenzialergebnisse geben Ihnen einen ersten Anhaltspunkt, ob Ihr Gebäude mit einer Wärmepumpe beheizt werden kann, ersetzen aber nicht die Detailplanung vor Ort durch ein Fachunternehmen.
Wir empfehlen Ihnen daher, zusätzlich den Hamburger Wärmepumpenrechner zu nutzen, um sich detailliert über die Eignung Ihres Gebäudes für die Wärmeversorgung mit einer Wärmepumpe zu informieren. So sind Sie für das Erstgespräch mit Ihrem Heizungsinstallateur oder Energieberater bestens vorbereitet.
Durch Anklicken einer Fläche in der Karte werden in einem Popup-Fenster weitere Details und Links zu weiterführenden Informationen angezeigt.
Die Einfärbung der Fläche veranschaulicht das Potenzial von hoch bis gering. Das Potenzial wird ausgedrückt als Anteil der Gebäude in der Gebietseinheit, die theoretisch mit einer Luft- oder Erdwärmepumpe beheizt werden könnten. Diesen prozentualen Anteil finden Sie unter der Kategorie „Anteil der versorgbaren Gebäude“.
Der Ausbau der oberflächennahen Geothermie soll als Beitrag zur Loslösung von fossilen Brennstoffen im Wärmesektor gezielt gesteuert und unterstützt werden, indem hierzu die geologische Datenlage auf bundesweit einheitlichem Niveau verbessert und über das etablierte geothermische Informationssystem GeotIS öffentlich zugänglich zur Verfügung gestellt wird. Unter Einbindung der Staatlichen Geologischen Dienste sollen Ampelkarten erstellt werden, die das Nutzungspotenzial der oberflächennahen Geothermie deutschlandweit darstellen. Die Verschneidung von Erdwärmepotenzial mit Wärmebedarfsdichte soll eine ökologisch verträgliche Effizienzsteigerung und ökonomisch solide Ausbaupfade des Erdwärmepotenzials in Deutschland ermöglichen. Eine jährliche Abfrage zu neu installierten Erdwärmepumpen soll ergänzt werden. Neben der Ertüchtigung von GeotIS für die oberflächennahe Geothermie sollen weitere Datenmodelle, Konzepte und Empfehlungen entwickelt werden, um den Ausbau der oberflächennahen Geothermie voranzutreiben und zu stärken. Die Universität Göttingen übernimmt entsprechend ihrer Kompetenz Aufgaben aus den Bereichen Hydrogeologie, Geohydraulik, angewandter Geothermik, Mittelstandsforschung, Öffentlichkeitsarbeit und Projektmanagement und IT-seitige Entwicklungsarbeiten.
„Geothermie“ oder „Erdwärme“ ist die unterhalb der Oberfläche der festen Erde gespeicherte Energie in Form von Wärme und zählt zu den regenerativen Energien. Diese beruht im Wesentlichen auf der von der Sonne eingestrahlten Wärmeenergie und dem nach oben gerichteten, terrestrischen Wärmestrom. Die von der Sonne eingestrahlte und von der Erdoberfläche an die Atmosphäre wieder abgegebene Wärmeenergie beeinflusst hierbei maßgeblich die Temperaturen im oberflächennahen Bereich bis etwa 15 bis 20 Metern Tiefe. Hier finden jahreszeitlich bedingte Temperaturschwankungen statt. In größerer Tiefe ist nur noch der terrestrische Wärmestrom maßgebend. Ursache ist die bei der Erdentstehung freigewordene Energie und der Zerfall radioaktiver Isotope. Mit der Tiefe nehmen die Temperaturen hier um durchschnittlich etwa 3 °C pro 100 Meter Tiefe zu. Man spricht auch von der „geothermischen Tiefenstufe“ oder dem „geothermischen Gradienten“. In einer Tiefe von etwa 20 m ist eine unbeeinflusste Temperatur von ca. 9 °C zu erwarten, in 100 m 12 °C und in 1.000 m etwa 40 °C. Der Transport der Wärme erfolgt durch Wärmeleitung von Teilchen zu Teilchen (Konduktion), aber auch durch bewegte Teilchen, also durch Grundwasserfluss (Konvektion). Berlin hat sich vorgenommen, bis spätestens im Jahr 2045 klimaneutral zu werden. Um dies zu erreichen, gilt es, gerade auch die Wärmeversorgung in der Stadt auf erneuerbare Energiequellen umzustellen. Denn fast die Hälfte des gesamten Berliner Endenergiebedarfs entfällt auf die Raumwärme und Warmwasserversorgung von Gebäuden. Bereitgestellt wird diese Wärme derzeit noch zu mehr als 90 Prozent über fossile Energieträger, also Kohle, Erdgas und Öl. Dies muss sich schnellstmöglich ändern. Dabei kann die Tiefe Geothermie – die emissionsfreie Förderung und Nutzung heißen Wassers aus tiefen Bodenschichten – eine wichtige Rolle spielen. Das genaue Potenzial im Berliner Untergrund ist noch unklar und muss erst präzise erkundet werden. Doch schon jetzt schätzen Geologen auf Grundlage bisheriger Erkenntnisse, dass bis zu einem Fünftel der benötigten Wärme mit Hilfe Tiefer Geothermie zur Verfügung gestellt werden könnte, etwa in Nah- und Fernwärmenetzen, über die Berliner Haushalte versorgt werden. Die Technik dazu ist bewährt und wird deutschlandweit in Dutzenden von Anlagen erfolgreich angewandt. Bild: SenMVKU Tiefe Geothermie. Erdwärme für Berlin Tiefe Geothermie, also Wärme, die in den Tiefen der Erde verfügbar ist, soll ein essenzieller Teil der Berliner Wärmeversorgung werden. Wir haben die wichtigsten Details für Sie zusammengestellt. Weitere Informationen Um das geothermische Potenzial von Berlin zu ermitteln, wurde in den Jahren 2009 bis 2012 die „Potenzialstudie zur Nutzung der geothermischen Ressourcen des Landes Berlin“ aufgeteilt in drei Module erarbeitet. Die Ergebnisse zu Modul 1, Grundlagenermittlung , und zu Modul 2, Ermittlung des geothermischen Potenzials und dessen Darstellung, bildeten Grundlagen für die Darstellung der Potenzialkarten . Die Arbeiten zu Modul 3, Thermisch-hydraulische Modellierung, sind in der Zusammenfassung der Berichte (Modul 1 bis 3) enthalten, die nachfolgend als Download zur Verfügung steht. Im Jahr 2023 wurde eine aktualisierte Potenzialstudie zur Mitteltiefen Geothermie in Berlin erstellt, welche die Ergebnisse aus verschiedenen Forschungsprojekten der vorangegangenen 10 Jahren berücksichtigt. Aus dem Verbundprojekt „TUNB – Potenziale des unterirdischen Speicher- und Wirtschaftsraumes im Norddeutschen Becken“ ist ein dreidimensionales Modell des Norddeutschen Beckens verfügbar, welches für den Raum Berlin mittels zusätzlicher Daten aus 2D/3D-Seismik und Bohrungen verfeinert wurde. Anschließend erfolgte eine geothermische Parametrisierung der potenziellen Nutzhorizonte, wobei vor allem auf die Ergebnisse der Verbundprojekte Sandsteinfazies, GeoPoNDD und MesoTherm zurückgegriffen wurde. Die aktualisierte Potenzialstudie und die Daten des 3D-Untergrundmodells stehen nachfolgend als Download zur Verfügung. Im Ballungsraum von Berlin ist die Temperatur des Untergrundes durch den Menschen tiefgreifend erwärmt. Der Anstieg der durchschnittlichen Oberflächentemperatur durch die globale Klimaerwärmung hat diesen Prozess zusätzlich noch verstärkt. Dies zeigen langjährige Temperaturmessungen in Grundwassermessstellen unter einer Tiefe von 20 m unter Gelände, unterhalb der jahreszeitliche Temperatureinflüsse durch die Sonne ausgeschlossen sind. In einigen Innenstadtgebieten sind Temperaturbeeinflussungen bis in über 80 m nachgewiesen. Die flächenhaft im Untergrund des Landes Berlin durchgeführten Temperaturmessungen zeigen deutlich, dass im zentralen Innenstadtbereich die Durchschnittstemperatur des Untergrundes und damit auch des Grundwassers zum Teil um mehr als 4 °C gegenüber den dünner besiedelten Randbereichen anthropogen bedingt erhöht ist. Die Temperaturmessungen belegen auch, dass sich dieser Temperaturanstieg zunehmend auch flächenhaft in größeren Tiefen bemerkbar macht. Dies zeigt die Karte für den Bezugshorizont 0 m NHN (Normalhöhennull), das entspricht je nach Lage im Stadtgebiet einer Tiefen von 35 bis 55 m Tiefe. Näheres zu dieser Thematik kann dem Umweltatlas Berlin und der Veröffentlichung zur Veränderung des Temperaturfeldes von Berlin ( BRB Henning & Limberg ) entnommen werden. Grundsätzlich ist die Art und Weise der Nutzung geothermischer Energie von der Temperatur des Vorkommens abhängig. Die oberflächennahe Erdwärme (z.B. bis 100 m) lässt sich derzeit wegen ihrer geringen Temperatur von 8 bis 12 °C nur in Verbindung mit einer Wärmepumpe nutzen, die die erforderliche Wärme für die Raumheizung und die Wassererwärmung erzeugt. Da mit zunehmender Tiefe die Temperatur des Untergrundes ansteigt, kann ab einer bestimmten Tiefe (ab etwa 1.000 m) die Untergrundwärme auch direkt (ohne Wärmepumpe) genutzt werden. Ist eine Stromerzeugung mit Dampfturbinen beabsichtigt, sind in der Regel Temperaturen von über 100 °C notwendig. Die dafür geeigneten Nutzungshorizonte liegen in unserer Region in der Regel drei bis fünf Kilometer unter der Erdoberfläche. In Berlin wird fast ausschließlich die oberflächennahe Geothermie genutzt, d. h. bis zu einer maximalen Tiefe von 100 m. Dafür steht ein ganzes Spektrum von technischen Möglichkeiten zur Verfügung. Alle diese Verfahren benötigen eine Wärmepumpe, die in der Lage ist, die relativ niedrige Temperatur des Untergrundes bzw. des Grundwassers in diesen Tiefen von 8– 2 °C mit Hilfe von elektrischer Energie auf ein für Heizzwecke geeignetes höheres Temperaturniveau zu bringen. Weitere Informationen zur Erdwärmenutzung Zur Erhöhung der Planungssicherheit dieser Erdwärmesondenanlagen werden im Umweltatlas Berlin Potenzialkarten zur spezifischen Wärmeleitfähigkeit und speziell für Einfamilienhäuser zur spezifischen Entzugsleistung dargestellt. Hierin sind die dafür maßgeblichen geologischen und hydrogeologischen Verhältnisse subsummiert. Da der Einbau von Erdwärmesondenanlagen in den Untergrund potenziell mit einem Risiko der Grundwassergefährdung verknüpft ist, werden zum Schutz des Grundwassers bei der Errichtung einer solchen Anlage hohe wasserrechtliche Anforderungen an das Bohrverfahren, die anschließende Bohrlochabdichtung, Drucktests, Dokumentation etc. gestellt. Neuere Forschungsergebnisse, Schadensfälle sowie die stark gestiegene Anzahl der Erdwärmesondenanlagen bestätigen diese Gefährdung immer wieder. Weitere Informationen zur Anzeigepflicht für Bohrungen Da Berlin sein Trinkwasser zu 100 % aus dem Grundwasser und fast ausschließlich aus dem eigenen Stadtgebiet bezieht, werden deshalb bei der Errichtung einer Erdwärmesondenanlage in dem dafür erforderlichen wasserbehördlichen Erlaubnisverfahren zum Schutz des Grundwassers besonders hohe Anforderungen gestellt. Näheres kann dem “Merkblatt für Erdwärmesonden und Erdwärmekollektoren mit einer Heizleistung bis 30 kW” entnommen werden. Pflichtenheft zur Methodik und Dokumentation thermohydrodynamischer Modellierungen im Rahmen des wasserrechtlichen Erlaubnisverfahrens zum Betrieb von Erdwärmesondenanlagen mit einer Heizleistung von >30 kW Kartenwerke zur Grundwassertemperatur Kartenwerke zum Geothermischen Potenzial Geothermisches Potenzial – Karten aktualisiert im Geoportal verfügbar Auf der Basis von ca. 14.950 Bohrungen der Bohrungsdatenbank der AG Landesgeologie der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt wurden zwölf Karten neu berechnet. Die verfeinerten Planungshilfen für die Auslegung von Erdwärmesondenanlagen stehen für die Tiefenklassen 0–40 m, 0–60 m, 0–80 m und 0–100 m zur Verfügung. Weitere Informationen Karten im Umweltatlas Berlin
Zielsetzung:
Die Dekarbonisierung unserer Wärmeversorgung ist eine zentrale Herausforderung der Energiewende. Insbesondere einfache Luft-Wärmepumpen kommen hierfür zum Einsatz: sie sind gut planbar, sehr flexibel und fast überall einsetzbar. Die Kombination der Wärmepumpen mit alternativen Wärmequellen, wie solarthermische oder photovoltaisch-thermische (PVT) Kollektoren, kann die Effizienz von Wärmepumpen deutlich steigern. Dadurch kann die effiziente Nutzung solcher Anlagen z.B. in urbanen Räumen und Orten, wo die Nutzung von oberflächennaher Geothermie nicht möglich ist, gefördert werden. Allerdings bietet die Planung solcher Anlagen vielfältige Kombinationen und weist eine entsprechend hohe Komplexität auf.
Bisher gibt es einige komplexe Demonstrationsanlagen, welche die höchste erreichbare Energieeffizienz solcher Anlagen unter besonderen Randbedingungen zeigen. Die daraus resultierende Komplexität dieser optimalen Anlagenkonzepte erschwert dessen Übertragung auf andere Gebäude mit unterschiedlichen Anforderungen: bspw. ist in urbanen Kontexten mit einer verdichteten Bauweise häufig kein Zugang zur Geothermie-Nutzung vorhanden; in urbanen Gebäuden im Bestand ist Platzmangel eher die Regel, wodurch die Installation zusätzliche Speichersysteme nahezu unmöglich wird. Zudem sind die Investitionskosten solcher Anlagen häufig deutlich größer als für herkömmliche Luft-Wärmepumpen Anlagen. Dies stellt auch ein wesentliches Hindernis für die Installation solcher Anlagen in Kontexten kollektiver Nutzung und begrenzter finanzieller Mittel dar.
Hauptziel unseres Projekts ist es, das technische und wirtschaftliche Potenzial dieser Anlagen zu untersuchen und durch den gezielten Austausch über Grenzen und Potenziale mit Praxispartner:innen die Umsetzung dieser effizienteren und innovativen Systeme zu fördern.
Im vorliegenden Projekt sollen erste allgemeine Auslegungsleitlinien für effiziente leicht übertragbare Systeme von Luft-Wasser und Sole-Wasser-Wärmepumpen in Kombination mit PVT oder Solarthermie-Kollektoren zur Nutzung in Kontexten von begrenzten räumlichen oder finanziellen Ressourcen.
Der Ausbau der oberflächennahen Geothermie soll als Beitrag zur Loslösung von fossilen Brennstoffen im Wärmesektor gezielt gesteuert und unterstützt werden, indem hierzu die geologische Datenlage auf bundesweit einheitlichem Niveau verbessert und über das etablierte geothermische Informationssystem GeotIS öffentlich zugänglich zur Verfügung gestellt wird. Unter Einbindung der Staatlichen Geologischen Dienste sollen Ampelkarten erstellt werden, die das Nutzungspotenzial der oberflächennahen Geothermie deutschlandweit darstellen. Die Verschneidung von Erdwärmepotenzial mit Wärmebedarfsdichte soll eine ökologisch verträgliche Effizienzsteigerung und ökonomisch solide Ausbaupfade des Erdwärmepotenzials in Deutschland ermöglichen. Eine jährliche Abfrage zu neu installierten Erdwärmepumpen soll ergänzt werden. Neben der Ertüchtigung von GeotIS für die oberflächennahe Geothermie sollen weitere Datenmodelle, Konzepte und Empfehlungen entwickelt werden, um den Ausbau der oberflächennahen Geothermie voranzutreiben und zu stärken. Das LIAG ist federführender Projektpartner übernimmt die Gesamtorganisation, Kommunikation mit den SGDs und stellt das Projektbüro. Entsprechend seiner Kompetenz erfüllt das LIAG Aufgaben aus den Bereichen IT-seitige Umsetzung, Programmierung, Fortschreibung des GeotIS, Geothermik und Geologie.