Objective: Aim is to modify two small hydropower plants to variable speed operation in order to increase annual energy output by improved part load efficiency and design flow. A 100 kW vertical axis Francis turbine (Kaltenburg, DE) and a new 18 kW waterwheel (Bettborn, LU) will be modified to variable speed operation by use of a AC-AC converter. There will be installed a movable free-overfall weir at the waterwheel. By an expected increase of the electricity production in the range of 10 to 20 per cent , the aim is to proof viability of improving existing low head hydro sites with this technology. Especially low head sites have high variation of head and flow. Variable speed technology allows the system to operate at maximum efficiency for a wide range of hydraulic conditions. Modern power electronics replaces complex mechanical control systems with a high need for maintenance. In wind energy, variable speed technology has already proven its advantages compared to other mechanical technologies. General Information: Unlike earlier approaches with a combination of double regulated turbines and variable speed in a new installation, in this project the combination of a Francis turbine (respectively a water wheel) in existing plants together with a frequency converter will be used to increase part load efficiency and design flow of the system. Only the new IGBT controlled converters which are now used in wind energy as well as in motive power industry appliances can guarantee a reliable variable speed operation of a normal asynchronous generator. The combination of the movable weir and variable speed operation of the water wheel will allow to optimise the power output of the plant under all conditions. The use of an IGBT converter makes it possible to compensate reactive power to improve the mains performance. Due to detailed theoretical analysis and according to the positive experience with variable speed operation in wind energy and motive power technology, the expected increase of the annual power output of the two plants is in the range of 10 to 20 per cent of the actual value. This will reduce the specific cost of the electricity by the same range. For the actual payback tariffs of many European countries, this will increase the number of feasible low head sites. The top water level control by variation of turbine speed (and so flow) will be demonstrated to show a simple, reliable and energy saving alternative to the old hydraulic systems, which are still installed in many sites. The success of the variable speed system in this plants will open a big European SME market for cheap technological improvement of small hydropower plants and low head sites. The monitored performance of the plants data will be stored in a data logger with a modem, to allow automatic down-loading from a server-PC via modem. ... Prime Contractor: Universität Kassel, Fachbereich Elektrotechnik/Informatik, Institut für Elektrische Energietechnik - IEE; Kassel; Germany.
Es wurden die Nutzungspotentiale von regenerativer Energie aus oberflächennaher Geothermie für die Heizung und Kühlung von Gebäuden in Verbindung mit Gebäudetemperierungssystemen untersucht. Die Untersuchung hat zum Ziel, die Möglichkeit der oberflächennahen Geothermienutzung über Bodenkollektoren, Erdsonden oder Fundamentspeicher für die Nutzung von Objektgebäuden zu ermitteln. Bei steigenden Kühllasten moderner Bürogebäude und geringen Heizlasten durch wesentliche bauphysikalische Verbesserungen, kann über Temperierungssysteme oder Bauteilaktivierung die Möglichkeit regenerativer Energie aus geothermischen Quellen die notwendige Heizung und Kühlung mit einem Anlagesystem erfolgen.
Das Ziel des Projekts Altholzdialog ist es, wissenschaftlich basierte Handlungsempfehlungen hinsichtlich der Inhalte für eine Qualitätssicherung und Endverbraucheraufklärung zur Steigerung der stofflichen Verwendung von Altholz zu entwickeln. Erreicht wird dies durch die Untersuchung von Entscheidungsszenarien, die sich am Qualitätsverständnis und dem Einfluss des Altholzeinsatzes auf die Kosten entlang der Wertschöpfungskette orientieren. Da Altholz fast ausschließlich in der Spanplattenproduktion stofflich eingesetzt wird, fokussiert sich das Projekt auf diesen Werkstoff. Durch die dialogorientierte Einbindung aller relevanten Akteure der Wertschöpfungskette (Entsorgung und Recycling, Holzwerkstoff- und Möbelherstellung sowie Endverbraucher) wird die Praxis bestmöglich abgebildet und die daraus abgeleiteten Handlungsempfehlungen erlauben einen realitätsnahen Ansatz zur Steigerung der Verwendung von Altholz. Das Projekt Altholzdialog soll die wissenschaftlichen und technischen Grundlagen schaffen, die Nutzungsdauer der Ressource Holz im Stoffkreislauf durch einen wiederholten stofflichen Einsatz von Altholz zu verlängern, um einen positiven Beitrag zum Klimaschutz zu erzeugen. Letztlich soll der Wert der nachwachsenden Ressource Holz als wertvoller Rohstoff, den es auch bei wiederholter Nutzung zu schätzen gilt, in der Gesellschaft gesteigert werden.
Grundlastfähige Energie- und Wärmegewinnung aus erneuerbaren Ressourcen ist entscheidend für ein zeitnahes Erreichen der globalen Klimaziele. Die Tiefengeothermie kann sowohl Wärme als auch Strom unabhängig von Wetterbedingungen liefern und spielt somit eine Schlüsselrolle beim Vorantreiben der grünen Energiewende. Die Hauptfaktoren, die ein schnelleres Wachstum des Sektors der tiefen Geothermie verzögern, sind lange Amortisationszeiten und hohe sozioökonomische Risiken im Zusammenhang mit dem möglichen Auftreten von induzierter Seismizität. Um diese Risiken zu verringern, müssen geologische Unsicherheiten und die Gefahr von induzierter Seismizität minimiert werden. In diesem Projekt schlagen wir eine vollumfängliche seismotektonische Studie vor, die unter Verwendung von modernsten seismologischen und geomechanischen Arbeitsabläufen und Methoden neue Strategien zur Bewertung der seismischen Gefahren vor dem Betriebsbeginn entwickelt. Mit kontinuierlichen Daten der Bodenbewegungen, einem detaillierten Erdbebenkatalog, Bohrprotokollen, hydrogeologischen und gesteinsphysikalischen Parametern können wir verschiedenste Aspekte potentieller geothermischer Reservoirs quantifizieren und unter realistischen Bedingungen modellieren. Diese Untergrundmodelle erlauben anschließend Langzeitsimulationen der Spannungsveränderungen und Simulationen der seismischen Wellenausbreitung. Mit den entwickelten Arbeitsabläufen demonstrieren wir fiktive geothermische Standorte in der Niederrheinischen Bucht. Durch optimierte Standortauswahl auf Basis von probabilistischen Untergrundmodellen kann die Gefahr von induzierter Seismizität grundsätzlich reduziert werden. Die Ergebnisse dieses Projekts werden Investitionen in den Geothermiesektor auslösen und somit den Geothermiemarkt in Deutschland stärken und eine schnellere Expansion ermöglichen. Diese Entwicklung ist notwendig, um die von der Generalversammlung der Vereinten Nationen in der Agenda 2030 festgelegten Energieziele zu erreichen.
1
2
3
4
5
…
160
161
162