API src

Found 436 results.

Related terms

CO₂-Emissionen pro Kilowattstunde Strom 2024 gesunken

<p>Berechnungen des Umweltbundesamtes (UBA) zeigen, dass die spezifischen Treibhausgas-Emissionsfaktoren im deutschen Strommix im Jahr 2024 weiter gesunken sind. Hauptursachen sind der gestiegene Anteil erneuerbarer Energien, der gesunkene Stromverbrauch infolge der wirtschaftlichen Stagnation und dass mehr Strom importiert als exportiert wurde.</p><p>Pro Kilowattstunde des in Deutschland verbrauchten Stroms wurden im Jahr 2024 bei der Erzeugung durchschnittlich 363 Gramm CO2 ausgestoßen. 2023 lag dieser Wert bei 386 und 2022 bei 433 Gramm pro Kilowattstunde. Vor 2021 wirkte sich der verstärkte Einsatz erneuerbarer Energien positiv auf die Emissionsentwicklung der Stromerzeugung aus und trug wesentlich zur Senkung der spezifischen Emissionsfaktoren im Strommix bei. Die wirtschaftliche Erholung nach dem Pandemiejahr 2020 und die witterungsbedingte geringere Windenergieerzeugung führten zu einer vermehrten Nutzung emissionsintensiver Kohle zur Verstromung, wodurch sich die spezifischen Emissionsfaktoren im Jahr 2021 erhöhten. Dieser Effekt beschleunigte sich noch einmal im Jahr 2022 durch den verminderten Einsatz emissionsärmerer Brennstoffe für die Stromproduktion und den dadurch bedingten höheren Anteil von Kohle.</p><p>2023 und fortgesetzt 2024 führte der höhere Anteil erneuerbarer Energien, eine Verminderung des Stromverbrauchs infolge der wirtschaftlichen Stagnation sowie ein Stromimportüberschuss zur Senkung der spezifischen Emissionsfaktoren: Der Stromhandelssaldo wechselte 2023 erstmals seit 2002 vom Exportüberschuss zum Importüberschuss. Es wurden 9,2 Terawattstunden (⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>⁠) mehr Strom importiert als exportiert. Dieser Trend setzt sich im Jahr 2024 fort. Der Stromimportüberschuss stieg auf 24,4 TWh. Die durch diesen Stromimportüberschuss erzeugten Emissionen werden nicht der deutschen Stromerzeugung zugerechnet, da sie in anderen berichtspflichtigen Ländern entstehen. Die starke Absenkung des spezifischen Emissionsfaktors im deutschen Strommix ab dem Jahr 2023 ist deshalb nur bedingt ein ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ für die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=Nachhaltigkeit#alphabar">Nachhaltigkeit</a>⁠ der Maßnahmen zur Reduzierung der Emissionen des Stromsektors.</p><p>Die Entwicklung des Stromverbrauchs in Deutschland</p><p>Der Stromverbrauch stieg seit dem Jahr 1990 von 479 Terawattstunden (TWh) auf 583 TWh im Jahr 2017. Seit 2018 ist erstmalig eine Verringerung des Stromverbrauchs auf 573 TWh zu verzeichnen. Mit 513 TWh wurde 2020 ein Tiefstand erreicht. Im Jahr 2021 ist ein Anstieg des Stromverbrauchs infolge der wirtschaftlichen Erholung nach dem ersten Pandemiejahr auf 529 TWh zu verzeichnen, um 2022 wiederum auf 516 TWh und 2023 auf 454 TWh zu sinken. Dieser Trend setzt sich 2024 mit einem Stromverbrauch von 439 TWh fort. Der Stromverbrauch bleibt trotz konjunktureller Schwankungen und Einsparungen infolge der Auswirkungen der Pandemie und des russischen Angriffskrieges in der Ukraine auf hohem Niveau.</p><p>Datenquellen</p><p>Die vorliegenden Ergebnisse der Emissionen in Deutschland leiten sich aus der Emissionsberichterstattung des Umweltbundesamtes für Deutschland, Daten der Arbeitsgruppe Erneuerbare Energien-Statistik, Daten der Arbeitsgemeinschaft für Energiebilanzen e.V. auf der Grundlage amtlicher Statistiken und eigenen Berechnungen für die Jahre 1990 bis 2022 ab. Für das Jahr 2023 liegen vorläufige Daten vor. 2024 wurde geschätzt.</p><p>Hinweis: Die im Diagramm gezeigten Daten sind in der Publikation "Entwicklung der spezifischen Treibhausgas-Emissionen des deutschen Strommix in den Jahren 1990 - 2024" zu finden.</p>

Gerechte interregionale Verteilung von Kosten und Nutzen der Energiewende - Konzepte, Auswirkungen und Umsetzungsoptionen für den Ausbau der Energieinfrastruktur, Teilprojekt: Juristische Analyse

Für das langfristige Gelingen der Energiewende ist es entscheidend, dass diese gerecht gestaltet wird. Bei der Standortwahl für Infrastruktur zur erneuerbaren Stromerzeugung und -verbreitung spielen Gerechtigkeitsaspekte besonders durch die räumliche Varianz damit verbundener lokaler Kosten (z.B.Lärmemissionen) und Nutzen (z.B.regionale Wertschöpfung) eine wichtige Rolle. Diese räumliche Ungleichverteilung lokaler Effekte kann zum Widerstand gegen Energieinfrastrukturprojekte beitragen. In diesem Zusammenhang behandelt das Vorhaben die Frage, wie Verteilungsgerechtigkeit zwischen Regionen auch bei der Steuerung des Ausbaus erneuerbarer Energieinfrastruktur mitgedacht werden kann und sollte. Dazu wird erarbeitet, wie interregionale Verteilungsgerechtigkeit auf den räumlichen Ausbau von Energieinfrastruktur angewendet werden kann, zu welchen Verteilungs- und Effizienzwirkungen sie in der Praxis führt und wie sie regulatorisch umsetzbar ist. Das Vorhaben umfasst dazu die konzeptionelle Aufarbeitung verschiedener Gerechtigkeitsansätze sowie deren empirische Anwendung auf den Ausbau erneuerbarer Energieinfrastruktur in Deutschland. Durch die enge Zusammenarbeit mit Partner:innen aus der Praxis werden die Projektergebnisse hinsichtlich ihrer Relevanz für und Anwendbarkeit auf die Praxis kritisch analysiert. Der Einbezug von Bürger:innen im Rahmen einer Befragung ermöglicht außerdem die Berücksichtigung der öffentlichen Präferenzen zu verschiedenen Gerechtigkeitskonzepten. Die abschließend erfolgende rechtliche und ökonomische Instrumentenanalyse zur Umsetzung verschiedener Gerechtigkeitskonzepte beim Ausbau von Energieinfrastruktur stellt damit eine fundierte wissenschaftliche Grundlage für politische Entscheider:innen dar.

Sonnenkollektoren, Solarthermie

<p>Sonnenkollektoren: Klimafreundlich dank regenerativer Energiequelle</p><p>So erzeugen Sie Wärme aus Sonnenenergie für Ihr Zuhause</p><p><ul><li>Installieren Sie Sonnenkollektoren, wenn Sie Platz auf Ihrem Dach haben.</li><li>Nutzen Sie Förderprogramme und beachten Sie gesetzliche Vorgaben.</li></ul></p><p>Gewusst wie</p><p>Sonnenkollektoren (Solarthermie) erwärmen Brauchwasser und können zusätzlich zur Heizungsunterstützung genutzt werden. Das spart wertvolle Ressourcen (Öl und Gas) und vermeidet umwelt- und klimaschädliche Emissionen.</p><p><strong>Sonnenkollektoren installieren:</strong>&nbsp;In Frage kommen Dachausrichtungen von Ost über Süd bis West. Bei Ost- oder Westausrichtung wird mehr Kollektorfläche benötigt. Eine Anlage zur Warmwassererzeugung braucht pro Person 1 bis 1,5 m2&nbsp;Kollektorfläche und für vier Personen ca. 300 Liter Speicher. Sie liefert übers Jahr ca. 60&nbsp;% des benötigten Warmwassers. 6 m2&nbsp;Fläche erzeugen ca. 2.000 kWhth/Jahr. Dies spart ungefähr 495 kg Treibhausgase ein (⁠UBA⁠ 2019). Die Investitionskosten für eine Solarthermieanlage, die mittels Flachkollektoren die Brauchwassererwärmung unterstützt, liegen die Anlagenkosten zwischen ca. 4.000-6.000 EUR. Vakuumröhrenkollektoren liefern eine bessere Energieausbeute, dabei sind jedoch die Kollektoren teurer. Die Rentabilität der Anlage hängt von Gebäudezustand, derzeitigem Heizsystem und Brennstoffpreisen ab. Eine genaue individuelle Planung und eine Auswertung der Energieverbräuche ist unerlässlich. Sie umfasst die Themen:</p><p>Eine herstellerunabhängige Energieberatung bieten z.B. viele Verbraucherzentralen an. Hilfreiche Online-Beratungstools und einen Renditerechner finden Sie bei den Links.</p><p><strong>Förderprogramme und gesetzliche Verpflichtungen:</strong> In bestehenden Gebäuden sind kombinierte Solaranlagen zur Brauchwassererwärmung und Heizungsunterstützung im Rahmen der <a href="https://www.kfw.de/inlandsfoerderung/Heizungsf%C3%B6rderung/">Bundesförderung für effiziente Gebäude</a>&nbsp;förderfähig. Sonnenkollektoren sind eine Möglichkeit, die Verpflichtungen nach dem Gebäudeenergiegesetz zu erfüllen. Bei manchen Anlagengrößen und Gebäudearten gibt es Anzeige- oder Genehmigungspflichten. Daher sollte beim örtlichen Bauamt nachgefragt werden.</p><p><strong>Was Sie noch tun können:</strong></p><p>unten Photovoltaikmodule zur Stromerzeugung, oben Solarkollektoren zur Wärmeerzeugung</p><p>Hintergrund</p><p><strong>Umweltsituation:</strong>&nbsp;Der Anteil der Solarthermie an der Wärmebereitstellung aus erneuerbaren Energien in Deutschland betrug im Jahr 2022 ca. 5 %. Das entspricht einer solarthermisch erzeugten Wärmemenge von ca. 9.733 GWh. Damit wurden ca. 2,6 Millionen Tonnen Treibhausgase (CO2-Äquivalente) vermieden, wobei die Herstellung der Anlagen und Betriebsstoffe bereits berücksichtigt sind. Ebenso werden ca. 1.175 Tonnen versauernde Stoffe (SO2-Äquivalente) eingespart (⁠UBA⁠ 2023 &amp; 2018). Die Wärmeerzeugung durch Sonnenkollektoren hat aus Umweltsicht viele Vorteile gegenüber Biomasseverfeuerung: keine Flächenkonkurrenz zum Nahrungsmittelanbau und keine Abgase im Betrieb. Allerdings kann Solarwärme nur einen Teil des Energiebedarfs für Warmwasser und Raumwärme decken.</p><p><strong>Gesetzeslage:</strong>&nbsp;Das Gebäudeenergiegesetz schreibt den Einsatz von 65&nbsp;% erneuerbarer Energien ab 2024 im Neubau vor, ab Mitte 2026 sukzessive auch für Bestandsgebäude. Dafür eignet sich auch Solarthermie. Für Solarthermie-Hybridheizungen in Wohngebäuden mit höchstens zwei Wohnungen sind 0,07 m2&nbsp;Kollektorfläche pro m2&nbsp;beheizter Nutzfläche und für Gebäude mit mehr als zwei Wohnungen 0,06 m2 Kollektorfläche notwendig; die restliche Heizung muss dann mindestens 60 % erneuerbare Brennstoffe nutzen (GEG 2023: § 71h). Die Bundesländer können höhere Anteile vorschreiben. Über die <a href="https://www.kfw.de/inlandsfoerderung/Heizungsf%C3%B6rderung/">Bundesförderung für effiziente Gebäude</a>&nbsp;können Solaranlagen im Bestand gefördert werden. Allerdings nur, wenn die Sonnenkollektoren auch zur Heizungsunterstützung beitragen.</p><p><strong>Marktbeobachtung:</strong>&nbsp;Die neu installierte Kollektorfläche ist seit einigen Jahren rückläufig. Ihren Höhepunkt hatte sie im Jahr 2012, in dem ca,1,2 Mio. m2&nbsp;zugebaut wurden. Im Jahr 2022 wurden ca. 91.000 neue Solarthermieanlagen installiert, dieser Zubau entspricht ca. 710.000 m² damit wuchs in Deutschland die insgesamte installierte Solarkollektorfläche auf 22,1 Mio. m² an (BSW 2023). Der Endkundenumsatz lag 2022 bei ca. 930 Mio. Euro (nach einem Maximum in 2008 mit 1,7 Mrd. Euro) (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ 2023).</p><p>Entsorgung von Solarthermiemodulen / Solarkollektoren</p><p><strong>Hinweis:</strong> Die Demontage und fachgerechte Entsorgung von Solarkollektoren wird in den allermeisten Fällen durch einen Handwerksbetrieb erfolgen. Andernfalls beachten Sie bitte das sich grundsätzlich die Vorschriften für die Entsorgung bestimmter Abfälle von Bundesland zu Bundesland und sogar von Kommune zu Kommune unterscheiden können.</p><p>Wir empfehlen Ihnen daher, sich an die örtliche Abfallbehörde bzw. Abfallbehörde des Bundeslandes zu wenden – auch für die Frage der fachgerechten Entsorgung in Ihrem Kreis / Ihrer Region.</p><p><strong>Solarthermiemodule / -kollektoren ohne elektrische Funktionen zur reinen Wärme / Warmwassererzeugung </strong>können z.B. bei den kommunalen Wertstoffhöfen der öffentlich-rechtlichen Entsorgungsträger entsorgt werden – eine Pflicht zur Rücknahme besteht allerdings nicht, auch können Gebühren für die Entsorgung anfallen. Auch manche Hersteller (oder Installateure) nehmen auf freiwilliger Basis alte Solarthermiemodule / -kollektoren zurück. Bei Solarthermiemodulen / -kollektoren, die den "Blauen Engel" als Umweltkennzeichen besitzen, verpflichten sich die Hersteller in der Regel zu Rücknahme und Entsorgung.</p><p><strong>Solarflüssigkeit:</strong>&nbsp;Bitte beachten Sie, dass in den Solarkollektoren noch Solarflüssigkeit (z.B. 1,2-Propylenglycol) enthalten sein kann. Diese ist oftmals ein ⁠Gemisch⁠ aus 1,2-Propylenglycol und Wasser und ggf. weiteren Inhaltsstoffen. Alte Solarflüssigkeit für Solarkollektoren darf nicht einfach über das Abwasser, die Kanalisation, noch sonst wie in der Umwelt entsorgt werden.<br>Solarflüssigkeit sollte vor der Entsorgung aus dem Kollektor entfernt werden und kann z.B. bei einer Schadstoffsammelstelle oder am kommunalen Wertstoffhof abgegeben werden.</p><p>Reine&nbsp;<strong>Photovoltaik-/ Solarmodule (PV-Module) die nur der Stromerzeugung dienen</strong>, sind Elektrogeräte und müssen nach den Vorgaben des ElektroG entsorgt werden. Das gilt auch für Hybridmodule bzw. Kombinationsmodule aus Photovoltaik und Solarthermie ("Solar-Hybridkollektor", "Hybridkollektor"), zur gleichzeitigen Strom- und Wärme- / Warmwassererzeugung. Mehr Informationen dazu auf der ⁠UBA⁠-Umwelttippseite zur <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/alte-elektrogeraete-richtig-entsorgen">Entsorgung von Elektroaltgeräten</a>.</p><p>Weitere Informationen finden Sie auf unseren ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Themenseiten:</p><p>Quellen</p>

Strom aus erneuerbaren Energien nach Energieträger (Gem.)

Die Karte zeigt die Stromerzeugung aus erneuerbaren Energien unterteilt nach Energieträger als Kreisdiagramm für die Gemeinden in Bayern.

Strom aus erneuerbaren Energien nach Energieträger (Lkr.)

Die Karte zeigt die Stromerzeugung aus erneuerbaren Energien unterteilt nach Energieträger als Kreisdiagramm für die Landkreise in Bayern.

Strom aus erneuerbaren Energien nach Energieträger (Reg.-Bez.)

Die Karte zeigt die Stromerzeugung aus erneuerbaren Energien unterteilt nach Energieträger als Kreisdiagramm für die Regierungsbezirke in Bayern.

Strom aus erneuerbaren Energien nach Energieträger (Plan.-Reg.)

Die Karte zeigt die Stromerzeugung aus erneuerbaren Energien unterteilt nach Energieträger als Kreisdiagramm für die Planungsregionen (Plan.-Reg.) in Bayern.

Energieforschungsplan EVUPLAN, Methodenentwicklung für ein Monitoring zur Witterungsbereinigung der EE- Stromerzeugung

Das Gesetz für den Ausbau erneuerbarer Energien (EEG) sieht unter §98 ein jährliches Monitoring zur Zielerreichung der festgelegten Ziele vor. Zu diesem Zwecke wird betrachtet, ob in dem jeweils vorangegangenen Kalenderjahr der Richtwert für die Stromerzeugung aus erneuerbaren Energien nach § 4a erreicht worden ist, und es wird die Ausbaugeschwindigkeit insbesondere unter Berücksichtigung der tatsächlichen Wetterbedingungen in dem vorangegangenen Kalenderjahr bewertet. Um dies überprüfen zu können, ist neben der Evaluation der umgesetzten Maßnahmen unter anderem auch eine nähere Untersuchung der witterungsbedingten Unsicherheiten der Strombereitstellung durch fluktuierende Quellen erforderlich. Dafür soll eine jährliche Quantifizierung der Witterungseffekte auf die EE-Stromerzeugung erfolgen. Durch Unterstützung des Projektes soll eine geeignete Methode zur Witterungsbereinigung von erneuerbarer Erzeugung (Windenergie (onshore), Windenergie (offshore), Photovoltaik (PV) und Wasserkraft) entwickelt werden. Das Vorhaben legt hierfür die energiemeteorologischen Grundlagen. Dabei soll ein besonderes Augenmerk auf die Nutzung öffentlich verfügbarer Daten gelegt und die Fortschreibbarkeit der Methodik durch das Umweltbundesamt ermöglicht werden. Das Vorhaben soll eine systematische Beschreibung der Witterungseffekte beinhalten. In dem Zusammenhang sollen auch mittel- bis langfristige Effekte des Klimawandels auf die Stromerzeugung aus erneuerbaren Quellen diskutiert werden.

Demonstration von Speicher- und Regelungs-Technologien der Windheizung 2.0, Teilvorhaben: Keramischer Wärmespeicher

Das Projekt 'Windheizung 2.0: Demo' dient der Weiterentwicklung und Demonstration einer systemverträglichen Sektorenkopplung zwischen der zukünftig steigenden regenerativen Stromerzeugung und der Wärmeversorgung hoch gedämmter Gebäude. Im Vorhaben wird die gesamte Systemtechnik der Windheizung 2.0 weiterentwickelt, die Nutzer-Interaktion mit Technik und Regelung untersucht und die Nutzer-Akzeptanz des Systems erfasst. Hierzu werden 4 Gebäude mit je einer der 4 Windheizung 2.0-Speichertechnologien ausgestattet. - großer Warmwasserspeicher - Bauteilaktivierung Alt- und Neubauvariante - Hochtemperatur-Steinspeicher Im Rahmen der vorangegangenen Windheizung 2.0 Projekte wurden Simulationsmodelle für die Anlagentechnik- und Speichersysteme entwickelt, validiert und in die Software WUFI® Plus integriert. Hiermit werden im Planungsprozess die Demogebäude, deren Anlagentechnik- und Speichersysteme als Modelle abgebildet und mit den Ergebnissen die Fachplanung unterstützt. Im Arbeitsschwerpunkt Netzintegration werden die folgenden 4 wesentlichen Punkte bearbeitet: - Online-Fähigkeit Bereitstellung prognosebasierter Schaltempfehlungen - Marktdienlichkeit Schaltempfehlungen - Netzdienlichkeit Schaltempfehlungen - Energiewirtschaftliche und -politische Aspekte der Preisgestaltung für WH 2.0 Gebäude Der gegenwärtige Stand des HTTS wird konstruktiv und werkstoffseitig weiterentwickelt und optimiert. Ziel ist die Erhöhung der Speicherkapazität unter Beibehaltung der Abmessungen. Die Luftführung wird vereinfacht. Der Vorfertigungsgrad des Speichers soll erhöht werden. Der optimierte HTTS wird im Musterhaus aufgebaut und betrieben. Weiterhin soll für den HTTS eine Variante entwickelt werden, welche für eine Aufstellung außerhalb des Gebäudes geeignet ist.

Energieforschungsplan EVUPLAN, Treibhausgasneutrale Stromerzeugung bis 2035 - Vergleich von Instrumenten für einen Erdgasausstieg

Die Dekarbonisierung der Stromerzeugung ist von zentraler Bedeutung zum Erreichen der nationalen und europäischen Klimaschutz- und Energieziele. Die G7 verpflichten sich zu dem Ziel einer überwiegend dekarbonisierten Stromversorgung bis 2035 und Sie bekennen sich dazu die Kohleverstromung zu beenden. Im Vorhaben sollen neben qualitativen Analysen auch modellbasierte Analysen für eine treibhausgasneutrale Stromerzeugung Deutschlands bis 2035 im europäischen Binnenmarkt durchgeführt werden. In einem ersten Schritt sollen dafür Szenarien berechnet werden, die eine Entwicklung unter den aktuellen nationalen und europäischen Beschlüsse zum Klimaschutz berücksichtigen. Darauf aufbauend sollen Instrumente entwickelt, modelliert und bewertet werden, die eine nahezu treibhausgasneutrale Stromerzeugung in Deutschland bis zum Jahr 2035 ermöglichen. Dabei sollen sowohl Instrumente untersucht werden, die durch Innovationsförderung und/oder Subventionen Erdgas aus dem Markt drängen und dafür Wasserstoff oder wasserstoffbasierte Brennstoffe anreizen (Innovationsstrategie), als auch solche Instrumente, die durch Pönalisierung zu einem Ausstieg führen (Exnovationsstrategie). Von besonderer Bedeutung für die Transformation der Stromversorgung ist neben dem schnellen Ausbau der erneuerbaren Energien insbesondere die Verzahnung mit dem Aufbau der Wasserstoffinfrastruktur und der Bereitstellung von Wasserstoff. Dies ist für die Dekarbonisierung der brennstoffbasierten Stromerzeugung von zentraler Bedeutung. Vor diesem Hintergrund braucht es weitere Untersuchungen zur Entwicklung der Gasverstromung bis 2035 und darüber hinaus, sowie zu der Verzahnung der Entwicklung im Kraftwerkspark mit dem Aufbau der Wasserstoffinfrastruktur und der Bereitstellung von Wasserstoff.

1 2 3 4 542 43 44